Aufgabenblatt 10 19.1.2012

Aufgabe 1: Fermi-Verteilung (11 Punkte = 3 + 2 + 3 + 3)

- 1. Gegeben sei ein Quantensystem, das nur zwei Zustände erlaubt: der Grundzustand $|0\rangle$ mit Energie $E_0 = 0$ und der erste angeregte Zustand $|1\rangle$ mit Energie $E_1 = \hbar \omega$. Bestimmen Sie die kanonische Zustandssumme für dieses System.
- 2. Gegeben seien N Quantensysteme wie in Aufgabenteil 1., wobei $E_{0,i}=0$ und $E_{1,i}=\hbar\omega_i$ für i=1,...,N. Zeigen Sie, dass

$$\ln Z_{tot} = \sum_{i=1}^{N} \ln Z_i , \qquad (1)$$

wobei Z_i die Zustandssumme des *i*-ten Systems ist.

3. Gegeben seien unendlich viele Systeme wie in Aufgabenteil 1. mit

$$\omega(\vec{n}) = \sqrt{\frac{m^2 c^4}{\hbar^2} + \left(\frac{2\pi c \,\vec{n}}{L}\right)^2} \,, \tag{2}$$

wobei m eine Konstante und $\vec{n} = (n_1, n_2, n_3)^T$ ein dimensionsloser dreidimensionaler Vektor aus ganzen Zahlen, $n_i \in \mathbb{Z}, i = 1, 2, 3$, ist. Zeigen Sie, dass für $L \to \infty$ gilt:

$$\ln Z_{tot} = g V \int \frac{d^3 p}{(2\pi\hbar)^3} \ln \left[1 + e^{-\beta c\sqrt{m^2 c^2 + \vec{p}^2}} \right] , \qquad (3)$$

wobei $\vec{p}=(2\pi\hbar/L)\,\vec{n},\,V=L^3$ und g=2s+1 die zusätzliche Spin-Entartung darstellt.

4. Studieren Sie den Fall m = 0. Bestimmen Sie die Funktionen $\varepsilon(T)$ und p(T) und zeigen Sie, dass die Selbst-Konsistenz (siehe Aufgabe 2. von Blatt 9) erfüllt ist.

Aufgabe 2: Chemisches Potential (11 Punkte = 3 + 2 + 4 + 3)

Gegeben sei die folgende fermionische großkanonische Zustandssumme:

$$\ln \mathcal{Z}_{tot} = g V \int \frac{d^3 p}{(2\pi\hbar)^3} \ln \left[1 + e^{-\beta \left(c\sqrt{m^2 c^2 + \vec{p}^2} - \mu \right)} \right] . \tag{4}$$

- 1. Bestimmen Sie die mittlere Teilchenzahl $\langle N \rangle$.
- 2. Bestimmen Sie die mittlere Energie $\langle E \rangle$.
- 3. Studieren Sie den Limes $T \to 0$. Wie lauten die Ausdrücke für $\langle N \rangle$ und $\langle E \rangle$ in diesem Fall? Zeigen Sie insbesondere, dass $\mu > mc^2$ gelten muss, damit $\langle N \rangle > 0$ ist. Berechnen Sie explizit $\langle N \rangle$ und $\langle E \rangle$ für den Fall m = 0.
- 4. Nehmen Sie an, dass $\langle N \rangle > 0$ unabhängig von T ist. Zeichnen Sie den qualitativen Verlauf der Funktion $\mu = \mu(T)$.

Aufgabe 3: Masseloses Gas in verschiedenen Dimensionen (8 Punkte = 3 + 2 + 3)

1. Gegeben sei ein freies Gas aus masselosen Teilchen, das von der Zustandssumme Z(T, V) beschrieben wird, die Eigenschaft $\ln Z = V f(T)$ erfüllt. Zeigen Sie, dass der Druck

$$p = p(T) = cT^4 \tag{5}$$

lautet. Hinweis: Machen Sie eine Dimensionsanalyse.

- 2. Berechnen Sie $\varepsilon(T) 3p(T)$.
- 3. Gegeben sei ein freies Gas aus masselosen Teilchen, das sich in D räumlichen Dimensionen befindet. (Z.B: D=2 bedeutet, dass man eine zweidimensionale Welt hat). Bestimmen Sie p(T) und $\varepsilon(T)$ und die Differenz $\varepsilon(T)-Dp(T)$.