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Conservation Form of Ideal MHD Eqgs
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( 1) Ideal equation of state
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Neglecting gravity force.
This form is often used in numerical simulation.




Conservation Form of Ideal MHD Eqgs

hyperbolic system (Partial Differential Equations) ,
(with source terms)

o.U + (%Fi = (0 (without source terms) O.U + @-Fi =S
conserved variables numerical flux
- p . _ i . . pvi . . .
I — pv i pviv' + (p + 3 B?)d; — B’ B’
S| gt e+ Bt |0 | (5pv* Hpetpt B2 — (v B)BY
I BY | I v'BI) — v B

source term

contribution of gravity, radiation, resistivity etc.

Solving equations are 4 dimensions (time + 3 spatial directions).
But we consider each spatial directions separately (Method of Lines).
Here we mostly focus on 1 spatial dimension (¢,x)




Finite Difference Scheme

« Partial differential equations (PDEs) are commonly solved numerically by
approximating the derivatives with difference operators.

» Schemes of different orders can be obtained depending on the truncation of
the corresponding Taylor series for the derivatives.

* Finite-difference schemes are based on a discretization of the x-t plane with
a mesh of discrete points (t",x;):

z;=(j—1/2)Az, t"=nAt, j=1,2,--- n=0,1,2,---

where Ax and At stand for the cell width and time step.

cell interface
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Finite Difference Scheme

* Let us consider the following scalar PDE
Ut =+ fa: =0, ug = U(O,I), f — f(U)

* A Finite Difference scheme for this eq is a time-marching procedure to obtain

approximations to the solution in the mesh points ujn+1 from approximations

in the previous time steps ujn

u
* We can approximate the time derivative Uy = 2 J
with a first-order forward (Euler) difference At
n n
and the spatial derivative with a first-order fo= j+1 — Ji—1
central difference ’ 2AT
which yields the explicit first-order central scheme:
un—|—1 - un At ( n o )
i T % T oA it T i

* Many other 1st-order and higher-order approximations are available in the
literature.



Method of Lines

* Generic name of a family of discretization methods in which space and time
variables are dealt with separately (3+1 approach).

* Time is discretized with finite differences and space discretization is done in
various ways (finite differences, finite elements, spectral methods etc).

* The hydro equations can be written in a compact way as a “semi-discrete”

system u: array of dynamical fields
oru =S S': remaining term in evolution egs.
including spatial derivatives

 PDE “disguised” as an ODE (standard ODE integrators can be applied) 1st-order
forward in time (Euler step)

u" = u" + AtS({t", u"™)

* 2nd-order Runge-Kutta scheme

uwt = u"+ AtS"
1 1 At
n+1 _ I ) Tk _S*
Uu 2u +2u —+ 5

* Higher-order in time ... many schemes available



Method of Lines

 Method of Lines can be used with any space discretization method. Finite-
Difference scheme is a fairly standard choice.
* Field values at grid points are represented by the array

Wi 5.k = ’Uf(?f, LiryYj, Zk)
» Space derivatives:

205w~ (Uit1gk + Uim15k — 2Uik)/ (AT)°
20pyu ~  (Wit1,j41,k = Wim1,j4+1,k

—Uit1 1.k + Ui—1,-1.%)/ (AzAy)
» Stencil: set of grid points needed to discretize space derivatives at a given
point P.
* Provides the numerical domain of dependence of selected point, i.e. any
perturbation at one of the stencil points will change the computed value at

P after a single time step. |
Numerical propagation speed: v, ., = STt s: stencil size



Method of Lines

* Physically, for a system describing wave propagation with some characteristic
speeds, the field values at P are causally determined by the values inside the
past half-cone with vertex at P, whose slope is given by the inverse of the

largest characteristic speed of the system.

* This provides the physical domain of dependence of P.
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* Courant (necessary) condition for numerical stability: the physical domain of
dependence of P must be included in the numerical domain of dependence.

,L' . . .
Umax < Mi0% Prowc?s an. upper limit for the
numerical time step.



Characteristics

* The hydro equations involve wave propagation (hyperbolic equations). Remember
they can be written in 1st-order quasilinear form:

U + A0, U =0 A(U) =0F/0U Jacobian matrix

* |f Jacobian matrix has constant coefficients (linear case), the solution procedure is
simple. First we diagonalize the Jacobian matrix so that

A=R 'AR A = drag(Ai, Ay ooty AN)
eigenvectors matrix eigenvalues matrix

« If we define the characteristic variables W = R~ U

* We can decouple the original systems of equations:

OW + Ad,W = 0
dw;
0y; + NOyD; = 0 <= d—“; — 0 along g—f — \(U(z, 1))

* Therefore, characteristic variables are constant along the curves of the (x,t)
plane whose slopes are the corresponding eigenvalue.



Characteristics

* Such curves are called characteristic curves and their slopes are given
locally by the characteristic speeds.

A

time t = tO + Ot o
the characteristic speeds are

/ different and the characteristic

i P T curves may “focus”

N

characteristic curves

t = to

SpacCe

'

 Since they are constant along the characteristics, the value of the characteristic
variables at any given time is known once the initial value is known, that is

Wz, t) = W'z — \t,t = 0)



Characteristics

* Once the solution is known in terms of the characteristic variables, it is
straightforward to obtain the solution in terms of the original state vector:

W=R'U — U=RW

Uz, t)=>» W'z, t)R"Y = W'z — \t,0)R)

* Thus, the solution is the linear superposition of N waves, each propagating

independently of the rest with a speed given by the corresponding eigenvalue
of the Jacobian matrix of the system.

* The so-called Godunov-type methods extend these concepts to nonlinear
hyperbolic equations, solving Riemann problems of a new system of equations
obtained by writing the original system as a quasi-linear system. Spectral

information of Jacobian matrices is the basis of such solvers, as for linear
systems.



Advection Equation

» Before discussing the solution of the hydrodynamics equations there are
aspects of their nonlinear nature to point out.

 The simplest linear hyperbolic 1

equation is the advection equation: t = tg + ot

time

Ou(z,t) + Oru(x,t) =0

lllllllllllll

* The solution is the initial one simply
translated in space and time.

* The propagation speeds are constant
in every point of space (linear nature
of the equation).




Burgers Equation

* The simplest nonlinear hyperbolic equation is Burgers equation:

Ou(z,t) + u(x, t)o0pu(z, t) = e(x, t)0*u(z, t)

where the r.h.s. is zero in the inviscid limit. Despite the similarity with the
advection equation, its solution is much different.
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Burgers Equation

* This behaviour is known as “shock steepening” and is a consequence of the

propagation speeds not being constant, contrary to what happens with the
advection equation, but are functions of space and time (nonlinear nature of
the equation).

A
* The maxima of the waves move faster ™€ t =tog+ ot

than the minima and tend to reach
them.

 NOTE: this is a property of the
equations and not of the initial data.

 Even smooth initial data will lead to
the appearance of shocks (in t>0) in
the case of inviscid fluids.




Burgers Equation

1
Oru + u0,u =0 u(x,0) = sinx + 5 sin (g)

15 T T T T T T

Credit: Balbas & Tadmor.
CentPack (high-resolution central schemes)
http://www.cscamm.umd.edu/centpack



http://www.cscamm.umd.edu/centpack

High-Resolution Methods

High-resolution methods: modified high-order finite-difference methods with
appropriate amount of numerical dissipation in the vicinity of a discontinuity.

Quantity u'; IS an approximation to u(xj, ") but in the case of a conservation law it is
preferable to view it as an approximation to the average within the numerical cell

5-1/2> 12} 1 Tjt1/2 . . .
/ consistent with the integral
xr

u ~ — u(x,t")dx
form of the conservation law

T Ax
j—1/2
For hyperbolic systems of conservation laws, schemes written in conservation form
guarantee that the convergence (if it exists) is to one of the so-called weak
solutions of the original system of equations (Lax-Wendroff theorem 1960).

A scheme written in conservation form reads:

At ~ T ~
n+1l1 . n
i T % T AL (fj+%—fj—

AT
. ) where f, isthe

numerical flux function

N~



Conservative Form

The conservation form of the scheme is ensured by starting with the integral

version of the PDE in conservation form. By integrating the PDE within a

spacetime computational cell 1
@172, 511/0) X [t7, "]

the numerical flux function is an approximation to the time averaged flux
across the interface: it

A

fj+1/2 ~ / f(u(a:j+1/2,t))dt

t?’l,
The flux integral depends on the (unknown) solution at the numerical
interfaces during the time step, u(ij/Q, t)

Key idea (Godunov 1959): a possible procedure is to calculate this solution by
solving Riemann problems at every cell interface.

u(xj—I-l/Za ) (O ’Ll, ug—l—l)

Riemann solution for the left and
right states along the ray x/t=0.



The Riemann Problem

* A Riemann problem is an initial value [ up ifx<O
problem with discontinuous initial data: %0 — up ifzx>0

* The solution is constant along the straight lines x/t = constant, and, hence,
self-similar.

* |t consists of constant states separated by rarefaction waves (continuous self-
similar solutions of the differential equations), shock waves, and contact
discontinuities (Lax 1972).

The incorporation of the
exact solution of Riemann

Right T problems to compute the

time

numerical fluxes of Euler’s
equations is due to
Godunov (1959)




The Riemann Problem

When a Cauchy problem described by a set of continuous PDEs is
solved in a discretized form, the numerical solution is piecewise
constant (collection of local Riemann problems).

 §
t=n

u(x,r): continious

u. (x., t"): piecewise const.
] =28




The Riemann Problem

 This is particularly problematic when solving the hydrodynamic/MHD
equations (either Newtonian or relativistic) for compressible fluids.

* Their hyperbolic, nonlinear character produces discontinuous solutions in a
finite time (shock waves, contact discontinuities) even from smooth initial
data!

* Any numerical scheme must be able to handle discontinuities in a
satisfactory way.

Numerical Approach:
1. 1st-order accurate schemes (e.g., Lax-Friedrich): Non-oscillatory but
inaccurate across discontinuities (excessive diffusion)

2. (standard) 2nd-order accurate schemes (e.g., Lax-Wendroff): Oscillatory
across discontinuities

3. 2nd order accurate schemes with artificial viscosity

|4. Godunov-type schemes (upwind High Resolution Shock Capturing schemes) |




The Riemann Problem

* Solving linear advection equations

Lax-Friedrichs Upwind

1st-order:

smear out at even
discontinuity

Ny,

0 0.9 1 0 0.9

Lax-Wendroff MacCormack

2nd-order:

¥

oscillation at
discontinuity

0 0.9 1 0 0.9



The Riemann Problem
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Lax-Wendroff numerical solution of Burger’s equation at t=0.2 (left) and t=1.0 (right)
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2nd order TVD numerical solution of Burger’s equation at t=0.2 (left) and t=1.0 (right)



The Riemann Problem

rarefaction wave shock
v
3 | t=n+1 // = 2
R ol
3 s
. i . .
A | N N I:
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_ | -,,/ n
~ | ~ ~
Y I Y N
j-1 J j+l o
2 t=n | +i
N
L -
X | X X _
j-1 jti A

Solution at time n+1 of the two Riemann
problems at the cell boundaries x;. ;

and Xj_1/2

Spacetime evolution of the two Riemann
problems at the cell boundaries x;. ;

and x; ;. Each problem leads to a shock

wave and a rarefaction wave moving in
opposite directions

Initial data at time n for the two Riemann
problems at the cell boundaries x;. ;

and Xj_]/2



Approximate Riemann Solver

In Godunov’s method the structure of the Riemann solution is “lost” in the cell
averaging process (1st order in space).

The exact solution of a Riemann Problem is computationally expensive, particularly
in multidimensions and for complicated EoS.

This motivated development of approximate (linearized) Riemann solvers.

Based on the exact solution of Riemann Problem corresponding to a new system of
equations obtained by a linearization of the original one (quasilinear form). The
spectral decomposition of the Jacobian matrices is on the basis of all solvers
(“extending” ideas for linear systems).

ou O ou ou 0

| / =0= —+A—=0, A:—f

ot  Ox ot Ox ou
Approach followed by a subset of shock-capturing schemes, the so-called Godunov-
type methods (Harten & Lax 1983; Einfeldt 1988).




Standard Implementation of a
HRSC Scheme

1. Time update (Method of Line):
Algorithm in conserved form

cell interface

312 j-1/2 12 4302 (numerical fluxes)
/ n+1
t

€ © © © © © ©

dx |dt time update

n

o o o o o o o |

J-2 J-1 J j+1 j+2 \ cell center

(conserved quantities)

At AT AN
n—+1 n n
u; = uj N (fj+% — fj_%> + AtS’,

In practice: used 2nd or 3rd order time accurate, conservative
Runge-Kutta schemes (Shu & Osher 1989; Mol)




Time Evolution

System of Conservation Equations

oU=-V.F+S=L(U).

We use multistep TVD Runge-Kutta method for time advance of
conservation equations (RK2: 2"9-order, RK3: 3"-order in time)

RK2, RK3: first step U = U™ + AtL(U™).

RK2: second step (a=2, B=1)

1 ‘ _
U™t = —[3U" + UW 4 AtL(UW)],

8

RK3: second and third step (a=4, B=3)

. 1 )
U® = ~[gU" + UD + AtL(UW)],

Ut — %[‘SU » 42U 4 2AtL(UW)),



Standard Implementation of a
HRSC Scheme

2.cell reconstruction:

Cell-centered variables (P))

. , , Piecewise linear interpolation
— interpolate to right and left side P

-1 I L PLi+1/2 PRi+1/2
of Cell-interface variables (P~ ;, U i Un
PRj+1/2) \“I\\.i_l
Piecewise constant (Godunov), P -2 n+1
linear (MUSCL, MC, van Leer), B2 "1
parabolic (PPM), or higher ; Po
interpolation (WENO, MP) E U
procedures are used. 1—172 F
i+1/2
| I |
A1 A A+l
X X




Standard Implementation of a
HRSC Scheme

3.numerical fluxes: M, \;: fastest characteristic speed

e Calculate numerical flux at cell-inteface
from reconstructed cell-interface variables
based on Riemann problem

AR
AL

max(Ag, 0)
min(Az,0)

| | HLL flux
» Approximated Riemann Solvers (Roe, PHLL _ ARFL — MLFR + ArAL(Ur — UL)

HLLE, HLLC, HLLD,...) are used Ao — L
. . : : A AL Mg
e Explicit use of spectral information of

system (HLLE use only the maximum left- and M
right- going wave speeds)

L R
Fiip U F
+1)/2 " X
- E— Q I— Q If N, >0 Fr =Fy
Pi-l Pi Pi"‘l }\’L<0<7\R’FHLL:FM
A <0 Fr =g




Approximate Riemann Solver

* (Lax-Friedrich Riemann solver: simpler version of HLL Riemann solver)
 HLLE Approximate Riemann solver: single state in Riemann fan

* HLLC Approximate Riemann solver: two-state in Riemann fan (Mignone & Bodo
2006, Honkkila & Janhunen 2007)

 HLLD Approximate Riemann solver: six-state in Riemann fan (Mignone et al. 2009)

» Roe-type full wave decomposition Riemann solver (Anton et al. 2010)

HLL




Constrained Transport

Differential Equations

108 G xE=0 ey O(V-B)
c Ot o = ()
V-B=0 ot

* |f treat the induction equation as all other conservation laws,
maintain divergence free magnetic field
=> We need spatial treatment for magnetic field evolution

Constrained transport scheme

- The evolution equation
can keep divergence free
magnetic field

it can not

* Evans & Hawley’s Constrained Transport (need staggered mesh)

* Flux interpolated constrained transport (flux-CT) (Toth 2000)
* Fixed Flux-CT, Upwind Flux-CT (Gardiner & Stone 2005, 2007)
* and more higher ordered CT schemes

Other method
* Diffusive cleaning (GLM formulation)



Staggered Constrained Transport

Use staggered grid (with B defined at the
cell-interfaces) and evolve magnetic fluxes
through the cell interfaces using the
electric field evaluated at the cell-edges.

This keeps the following “cell-centred”
numerical representation of divB invariant

P,
X” A
2
BiJ+1 2 Xz
v 172
'
b Q- QO - - O 1
i—1/2. i1 i+1/2,j
i 2
©5 X 172
B ij—1/2
-
1 1 X
Xie X172
' 1 9 2
3 (BH-]/'_’.J i—l/'l.‘j) ( iJg+1/2 Bi.j—l/.’)
B; ;=




Flux Interpolated Constrained Transport

2 D case
1-£/4 - /4
f_,.
W\ | £
. = _.‘) .
fo/4 A ]1;.- / N f,/4
1- £/4 1-£/4
i-12 i+1/2
A )
B
Ay};ﬂ - B,'/ = /
A VB
A)}. - B \\\ - ,’/B [
y A
Ax.- AXx

k+1/2

Toth (2000)

Use the “modified flux” f that is such a linear
combination of normal fluxes at neighbouring
interfaces that the “corner-centred” numerical
representation of divB is kept invariant during
Integration.

sy
Bw,n_Atfj,k+1/2 f H—172

k-12 B¥P =
Ay
e 1/2,k fr 1/2
] ] j— ak
pyntl _ BV — At j+1/ j—=1/
J" Ax
: 1
f+1/2,k = g( 2 ;+*1/2L + g+1/2 k+1 + g+1/2;. 1
Yo * Yo+ ¥ Uy ¥
T Jgk+1/2 T dilk+1/2 T Jik=1/2 7 j+1,k—1/2)
1
f}{k-é—l/2 = g( 2 et st f?ll k+1/2
&L, Ly L%
JFL/2k — i1 2,k+1 3—1/2k f —1/2, x.+1)
T _ Rz Y Y
V.-B _ Bj'l'l R =1,k B k41 Bj,k—
(V-B)jx = +
2Ax 2Ay



General (Approximate) EoS

Mignone & McKinney (2007)

e In the theory of relativistic perfect single gases, specific enthalpy is a
function of temperature alone (Synge 1957)

b K3(1/0) ©: temperature p/p
K2(1/0)° K,, K;: the order 2 and 3 of modified Bessel functions
e Constant -law EoS (ideal EoS) : h=1+ %@

e [': constant specific heat ratio
e Taub’s fundamental inequality(Taub 1948) (h—©)(h —40) > 1,

Fey=—1—1  ©—0,T,— 53,00, [, —4/3 Solid: Synge EoS
h—1-0 Dotted: 1deal + I'=5/3
e TM EoS (approximate Synge’s EoS) 5 0 .. Dashed: ideal+ I'=4/3
(Mignone et al. 2005) h = §® +4/79°+ 1, Dash-dotted: TM EoS
O'BT C"” - N N ammen "
190 0.6f S— c/sqrt(3)

10¢
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103 107 100 ]
0
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Numerical Tests

* Various set of numerical tests for validate the code accuracy and performance:
« Wave propagation (comp. exact solution, check convergence)
* Shock-Tube (comp. exact solution, check convergence)
* Magnetic loop advection (check div. B problem)
« blast wave propagation w./w.o. Magnetic field
« Shock-shock interaction
« Kelvin-Helmholtz instability (checking growth rate)
e Jet propagation
* Magnetic reconnection (checking resistivity)

e eftc.



Code Accuracy (L1 norm)

1D CP Alfven wave propagation test
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L, norm errors of magnetic field v, shows almost 2"d order accuracy (RAISHIN code)



2D

Advection of Magnetic Field Loop
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Periodic boundary in all direction

Run until return to initial position in
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Volume-averaged magnetic
energy density (2D)
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Shock Propagation in High-
Resolution Shock Capturing Scheme

« Stable and accurate shock profiles

* Accurate propagation speed of discontinuities

* Accurate numerical resolution of nonlinear features: discontinuites,
rarefaction waves, vortices, turbulence, etc

Shock-tube test Cylindrical 0.0
time = 0.40 eXp|OSi0n 0.03
1.2 T T p — — » 0.02
1.0: - 0.01
0 8:- \ « 0.00
0.6f ]
0 4:— q 0.06
: ] 0.05
0.21 7 0.04
0.0: AAAAAAAAAAAAAAAAAAA ] 0.03
-0.4 -0.2 0:.1:0 0.2 0.4 0.02

0.01
0.00

Black: exact solution, Blue: MC-limiter,
, Orange: CENO, red: PPM




Code Accuracy
(grid number vs computer time)

1D shock-tube (Balsara Test 1) with 1 CPU calculated to t=0.4

1000.0 F .

100.0F E
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Q - 3
Q

% , |

N |

§ 10.0F 3

'& N 3
2

2
1.0FE tsimoch ]
.7 L. . ... ‘ L - |

100 1000
N, Number of grid



Parallelization Accuracy

1D shock-tube (Balsara Test 1) in 3D Cartesian box (fixed grid number and size),
calculated to t=0.4

100 ¢
2,
3

S 10F
Q@
2
"y

T(1) / T(N)
TE
1 10 100 1000
N

cpuw  Number of CPU



Summary

Finite-difference schemes are one of the commonly used numerical
method for solving partial differential equations (PDEs) which are based on
a discretization of the x-t plane with a mesh of discrete points (x;t")

The simplest linear hyperbolic equation is the advection equation. And the
simplest nonlinear hyperbolic equation is Burgers equation.

Burgers equations show shock steepening which is a consequence of the
propagation speeds not being constant.

A Riemann problem is an initial value problem with discontinuous initial
data. It consists of rarefaction waves, shock waves, and contact
discontinuities.

High resolution shock capturing scheme is high-order finite-difference
(volume) methods solving conserved form of PDEs with appropriate
amount of numerical dissipation in the vicinity of a discontinuity.



