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A Brief Review of Special
Relativity

 Special relativity (SR) is the physical theory of measurement in
inertial frames of reference proposed in 1905 by Albert Einstein

|t generalizes Galileo's principle of relativity — that all uniform
motion is relative, and that there is no absolute and well-
defined state of rest (no privileged reference frames) — from
mechanics to all the laws of physics.

* |n addition, special relativity incorporates the principle that the

speed of light is the same for all inertial observers regardless of
the state of motion of the source.



Simple Postulates

The laws of physics are the same in every inertial frame
of reference
The Principle of Relativity

The speed of light in vacuum is the same in all inertial
frames of reference, and is independent of the motion of
the source

Invariance of the speed of light



Consequence of Special
Relativity

Time dilation: the time lapse between two events is not invariant from one observer to another, but is
dependent on the relative speeds of the observers' reference frames.

Relativity of simultaneity: two events happening in two different locations that occur simultaneously
to one observer, may occur at different times to another observer (lack of absolute simultaneity).

Lorentz contraction: the dimensions (e.g., length) of an object as measured by one observer may be
smaller than the results of measurements of the same object made by another observer.

Composition of velocities: velocities (and speeds) do not simply 'add’, for example if a rocket is moving
at 2/3 the speed of light relative to an observer, and the rocket fires a missile at 2/3 of the speed of
light relative to the rocket, the missile does not exceed the speed of light relative to the observer.

Inertia and momentum: as an object's speed approaches the speed of light from an observer's point
of view, its mass appears to increase thereby making it more and more difficult to accelerate it from
within the observer's frame of reference.

Equivalence of mass and energy, E = mc?: Conservation of energy implies that in any reaction a
decrease of the sum of the masses of particles must be accompanied by an increase in kinetic energies
of the particles after the reaction.



Lorentz Transformations
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Minkowski line element
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Causal Structure of Spacetime
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Experimental Tests of SR

* SR makes many predictions, which are well tested:
* |sotropy of the speed of light
* |sotropy of space
« Constancy of the speed of light
 Time dilation and Doppler
* Length contraction
e Twin paradox
» Relativistic kinematics
» Relativistic velocity addition
« Variation of ¢ with frequency
« g-2 as test of SR
* Other — 14 experiments!

* The isotropy of c is particularly well tested:
« Michelson-Morley (and variations), Laser/Maser tests, Atomic
beams, Frequency-doubling interferometer, Cryogenic optical
resonators etc.



The Laws of Physics in SR

Write them as tensor equations (tensors are Lorentz
covariant entities).

E and B fields in Maxwell‘s theory e.g. are not covariant
=> use Faraday tensor.

Use conservation of energy and momentum.

Derive field equations, if possible, from Lagrangians (for
microscopic theories).



Summary of Special Relativity

» Special Relativity (1905) is well established.

 |nvariance of the speed of light is well tested, no preferred
frame of reference in Minkowski (flat spacetime)

* Laws of physics are to be written in covariant way:
 Maxwell’s theory with Faraday tensor etc.

e Question > 1905: How to include gravity?



From SR to GR

« Essential elements of SR are only local concepts:
(i) Concept of Minkowski spacetime
(ii) Concept of a metric g for distance measurements =>
notion of geodesics
(iii) Causal structure of SR induced by metric g => locally
Minkowskian

 How to incorporate gravity?
=> via Equivalence Principles => Geodesic => Spacetime as
manifold of events

* GR: Ricci tensor couples to all types of matter, but many
other metric theories.



The equivalence principle

The equivalence principle in few common words: “All things fall
in the same way”.

Or slightly more wordy: “all objects have the same acceleration
in a gravitational field” (e.g. a feather and bowling ball fall with

the same acceleration in the absence of air friction).

The fact that “All things fall in the same way” is true because the

“inertial” mass that enters Newton’s law of motion, FF’=ma, is the
same as the “gravitational” mass that enters the gravitational-
force law.

The principle of equivalence is really a statement that inertial
and gravitational masses are equal to each other for any object.



The equivalence principle

« Einstein’s equivalence principle:
* Uniqueness of free fall
e Local Lorentz invariance

e Local Position invariance

* Metric theory: definition in GR

« Curved spacetime (Riemann manifold) is endowed with a symmetric
four-dimensional metric

* Trajectory of free falling bodies are geodesics of that metric

* Einstein equivalence principle => Only metric theory viable.



General Relativity and The
Equivalence Principle

Einstein started to think of the path of an object as a property of spacetime itself,
rather than being related with the specific properties of the object.

The idea is that gravity is a manifestation of the fact that objects in free fall follow
geodesics in curved spacetimes.

What are geodesics?
We know in our ordinary experience (flat Minkowski spacetime) that in the
absence of any forces, objects follow straight lines, and we also know that straight

lines are the shortest possible paths that connect two points in such conditions.

The generalization of the notion of a “straight line” valid also in curved spacetimes
(Riemann manifold) is called geodesic.



Ants on the Apple

* A famous story to simply illustrate the
idea of general relativity is the GRAVlTATlON
"Parable of the Apple” by Misner, A o . 2. T Ot

Thorne, and Wheeler [Gravitation
(1973)].

* The parable tries to explain the nature
of gravitation in terms of the
curvature of spacetime.

* The spacetime of the parable is the
two-dimensional curved surface of an

apple.




Ants on the Apple

The tale goes like this. One day a student,
reflecting on the difference between Einstein's
and Newton's views about gravity, noticed ants

. . Apple
. Magnified view
running on the surface of an apple.

(local Larentzian view) (its surface is a curved two
. dimensional spacetime)
'/'/ i -] N V.:\\

By advancing alternately and of the same
amount the left and right legs, the ants seemed .'
to take the most economical path; “wow, they |

“-Ant's paths

| ,J nl
: : : |7 G & - (geodesics or
are going along geodesics on this surface! ot
The student followed the path of an ant tracing
it and then cutting with a knife a small stripe
around the trace.: Ino.leed when put on a plane i il i Al
the path is a straight line!” Misner, Thorne and Wheeler
Gravitation, p. 4

Each geodesic may be regarded as a path
(world line) of a free particle on this surface
(taken as a two-dimensional spacetime).



Ants on the Apple

Then the student looked at two ants
going from the same spot onto initially
divergent paths, but then, when

approaching the top (near the dimple) ;j29nitied ¥iew

(local Lorentzian view)

_r

of the apple, the paths crossed and |
continued into different directions! ,«fj?"\

The reason of the curved trajectories

IS:

——

According to Newton, gravitation is
acting at a distance from a center of
attraction (the dimple).

According to Einstein, the local
geometry of the surface around the
dimple is curved.

Apple
(its surface is a curved two
dimensional spacetime)

}:»Ant's paths
- (geodesics or
© worldlines)

The Parable of the Apple

Misner, Thorne and Wheeler
Gravitation, p. 4



Magnified view A..pple .
g . {its surface is a curved two
(local Lorentzian view)

ooy dimensional spacetime)
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I ‘ ' :;;Ant's paths

.~ fgeodesics or
" worldlines)

The Parable of the Apple
Misner, Thorne and Wheeler
Gravitatian, p. 4

« Comments: -
* Einstein interpretation dispenses with any action-at-a-distance.

« Although the surface of the apple is curved, if you look at any
local spot closely (with a magnifying glass), its geometry looks like
that of a flat surface (the Minkowski spacetime of SR).

 The interaction of spacetime and matter is summarized in
Wheeler's favorite words, “spacetime tells matter how to move,
and matter tells spacetime how to curve”.

« This reciprocal influence (matter <=> spacetime) makes Einstein’s
field equation non-linear and so very hard to solve.



Magnified view ﬂfpple .
; . {its surface is a curved two
{local Lorentzian view)

piing dimensional spacetime)

Ants on the
Apple

;Ant's paths
- (geodesics or
© waorldlines)

The Parable of the Apple
Misner, Thorne and Wheeler
Gravitatian, p. 4

Summary of the parable:

1) objects follow geodesics and locally geodesics appear straight

2) over more extended regions of space and time, geodesics originally
receding from each other begin to approach at a rate governed by the
curvature of spacetime, and this effect of geometry on matter is what

was called “gravitation”

3) matter in turn warps geometry.



Einstein Equations and General Relativity

Important quantities in general relativity:
» the metric (the metric tensor g), which may be regarded as a machinery for

measuring distances:
ds® = gudat dx”

 curvature, expressed by the Riemann curvature tensor
s I mYe’ s s o s o
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» the Ricci tensor R, = R, and the curvature (Ricci) scalar R = g"“R,,,,

1%e%%

e covariant derivative: a derivative that takes into account the curvature of
the spacetime



Einstein Equations and General Relativity

* From these quantities the path of any particle can be calculated. This is how
"geometry tells matter how to move".

* The other direction ("matter tells spacetime how to curve") requires to know the
distribution of matter (mass/energy/momentum), described through the stress-
energy tensor T.

« After many years of thinking, Einstein reached a satisfactory form for the equations
relating geometry and matter:

Einstein tensor = const. x T

* The Einstein tensor (usually called G) is a tensor in 4D spacetime that has the
wanted properties of:

being a symmetric tensor (it must because the stress-energy tensor is symmetric)

having vanishing (covariant) divergence (it must because the stress-energy tensor has
vanishing divergence)

the weak-field limit of the Einstein equations gives the Newtonian Poisson equation (from
the comparison to which the value of the above constant is found)



Einstein’s Field Equations

Einstein tensor Ricci tensor curvature scalar atter and
(spacetime) ran
Q! — R o 1 R — € T other fields
ur — Liyy Zg,ul/ o C4 Il
metric simplified form, no

(measure of spacetime distance) cosmological constant

Energy-momentum tensor 4-velocity

T" = p(1+ e+ p/p)utu” + pgh”

rest-mass density internal energy density pressure

Trajectories of freely falling bodies are geodesics

dzxo‘ dzP dx”
A2 B d\  d\

— ()| Geodesic equation




Some verified prediction of GR

e Gravitational redshift

« change in the frequency of light moving in regions
of different curvature

« measured in experiments and taken into account
by the GPS g

« Periastron shift .
 first measured in the perihelion advance of tn
Mercury (the GR prediction coincides with the

“anomalous” advance, if computed in Newtonian
theory)

* binary pulsar (strong fields, so larger shifts)

« Bending of light
« first measured in the bending of photons
traveling near the Sun
« gravitational lensing




Prediction of General Relativity:
Black Holes

A black hole is literally a region from which light cannot escape.

Black Hole is a stationary solution of Einstein’s vacuum equations R,z = 0, in which the

gravitational field is so powerful that nothing, not even electromagnetic radiation (e.g.
visible light), can escape its pull after having fallen past its event horizon.

The term derives from the fact that the absorption of visible light renders the hole's
interior invisible, and indistinguishable from the black space around it.

Despite its interior being invisible, a black hole may reveal its presence through an
interaction with matter that lies in orbit outside its event horizon => Black Hole shadow

There are several candidate objects that are thought to be black holes (because they
are very compact), but there has been no direct observation of black holes in

electromagnetic waves up to now (recently detected the gravitational waves by BH-BH
merger).



Prediction of General Relativity:
Gravitational Wave

 In general relativity, disturbances in the spacetime
curvature (the “old” “gravitational field”) propagate

at the speed of light as gravitational radiation or

gravitational waves (also known as gravity waves, but
this term was already in use in fluid dynamics with a

different meaning, so | recommend to avoid it) .

« Gravitational waves are a strong point of general
relativity, which solves the action-at-distance
problem of Newtonian gravity.

* Analogously to light, which is produced by the
motion of electric charges, gravitational waves are
produced by the motion of ... anything (mass-
energy). When you wave your hand, you make
gravitational waves.

* The point is that the amplitude of gravitational
radiation is very small.
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Birkhoff’s Theorem

Birkhoff's theorem states that in GR, any spherically symmetric
solution of the vacuum field equations must be stationary and
asymptotically flat.

This means that the exterior solution must be given by the
Schwarzschild metric.

This means that all spherical gravitational fields, whether from a
star or from a black hole, are indistinguishable at large distances.

A consequence of this is that purely radial changes in a spherical
star do not affect its external gravitational field => no scalar modes
of gravitational waves



Schwarzschild Black Hole

Schwarzschild BH is stationary symmetric solution of Einstein’s vacuum field
equations. This BH’s physical properties are only mass.

Schwarzschild metric (in Boyer-Lindquist coordinates)

2G M 2GM\
d32:—<1 ¢ >dt2+<1 ¢ > dr? + r*d6” + r? sin” 0d¢p”

(A (A

 2GM

> . Schwarzschild radius (= horizon radius)

I's

If r— 00 or M =0

Schwarzschild metric goes to normal flat Minkowski spacetime
(asymptotically flat)



Schwarzschild Black Hole

In Schwarzschild metric (in Boyer-Lindquist coordinates) r = 2GM/c? is a
coordinate singularity, surface of infinite redshift => Event Horizon.

Exterior Schwarzschild solution can be extended inside horizon with some
special coordinates as true vacuum solution.
* The metricis well-behaved at Schwarzschild radius

r=0 is a true curvature singularity.

This singularity is however hidden behind a horizon (Penrose suggested the
“Cosmic Censorship” hypothesis).

Horizon is no particular surface => you can move with your spaceship through
the horizon and tell us what happens inside?

Matter is not important for BH solution.



Orbits in Schwarzschild BH

* The equations governing the geodesics in a spacetime can be
derived from the energy integral given by the Lagrangian

o dx* dx”
— I T

 where A is some affine parameter along the geodesic. For time-
like geodesics, A may be identified with the proper time T.
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 Calculate the respective canonical momenta as pa = o
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Integrals of Motion

Further integrals of motion follow from the equations

dpe _ 0L _
dr Ot
dpy _ 0L _
dr  0¢
Thus we find
2M \ dt
Pt = (1 — —) — = Lk = const. Energy Integral
r dr
and
2 . 2,09
pg =r-sin” 00— = L = const. Angular momentum

dt



Effective Potential

d .
Py = r2d—f = L = const.  equatorial plane
rewrite Lagrangian
E? 72 L2 massive particle or

1—2M/r 1—2M/r r2 =2L=1,0 massless particle
find two integrals of motion

2 2
dr r r

dp L

dr  r?
first equation allow us to define an effective potential

ar® 2M L2
(&) =& v = () (14 55)
dT r r




Effective potential
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Possible
Orbit
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FOUR POSSIBLE ORBITS OF A SATELLITE OF A BLACK HOLE

3. Captured and then plunging

_. 4. Plunging directly

,/‘,

/

/' the satellite, where m is unit mass

1-4 lines show E/m levels of

this V/m curve is determined
by the amount of angular
momentum of the satellite,
given M

1. Circular orbit
(radius is constant)

2. Elliptical and revolving
(radius is periodically changing)
| 4 A

l\ 4

N o

unbound orbit

bound orbit
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Circular Orbit

First derivative of the potential give us the circular orbit
AV d (M L? L2M> M | L? 3L*M

|
| |

r 212

dr dr 3
Mr* — L*r+3L°M =0
Find the min and max of the radius (unstable & stable)

_Lrevrt-nesm? L2 \/1 12M2
fe T oM ToM e

The condition for the existence of a circular orbit: L? > 12M?

For the minimum L/M > /12, smallest possible radius of stable circular orbit
(ISCO) in Schwarzschild metric:

6M < r.(stable) < +oc

unstable circular orbits:
3M < r.(unstable) < 6 M



Kerr 1963:

Ke r r B I a C k H O I e Boyer-Lindquist: 1967

Boyer-Lindquist coordinates

ds® = —a dt® + &*(de — wdt)? + (p* /A)dr* + p*db?

N il lapse function
Y2

Horizon function

A = r>—2Mr+ a? . .
02 = 124 a%cos?0 generalized radius
¥¢ = (r*+4a*)? —a*Asin’d sigma potential
2aMr :
W o= 5 frame-dragging frequency
oo o= = sin 0 cylindrical radius
0

Properties of Kerr solution

» Asymptotically flat: o* ~ 1 —2M/r w ~ 2Jg /13
Ju = Ma angular momentum
» Event horizon: A(rg) =0: ry = M + /(M2 — a?)
a® < M?




Schwarzschild vs Kerr

Event horizon = surface of infinite redshift

point singularity ring singularity

event horizon

outer event horizon
ru=1.14rg

ergosphere Cauchy horizon
rpa=0.86rg

Schwarzschild Kerr
a==20 a=0.99 M



Uniqueness of Kerr Solution

Robinson Theorem (1975)=> Black Holes have no hairs (Wheeler)

Stationary axisymmetric solutions of Einstein’s vacuum
equations which satisfy

(i) are asymptotically flat (Minkowskian)
(ii)) contain a smooth convex horizon

(iii) are nonsingular outside the horizon
are uniquely specified by two parameters:

the mass M and the angular momentum
Jg = CLM, Jg < M2



Stationary Black Hole Solution

 Schwarzschild
{M}

e Reissner-Nordstrom

M, Q}

e Kerr

_ {M, a}
maximaler Satz von Parametern:

{M! a! Q}  Kerr-Newman
* Mass M, a, Q}

e angular momentum
. electric charge Wheeler: no hair theorem




Ergosphere & Frame-dragging

AXis of rotation

Inner
Outer horizon
_ horigon
Static N
limit

s Oir'b?it_s of ob]ccts
. near black hole

nrumiano




Why “Ergoregion"?
* “Ergo” = Energy

» All the spin energy of a black hole resides outside the
horizon => it can all be extracted (in ... theory)
* For maximum rotating Kerr BH with mass M:

spin energy = 29% of Mc”2

Two famous energy extraction mechanisms:
* Penrose process: particle splitting inside the elgosphere
* Blandford-Znajek process: BH spin twisted magnetic field



Geodesics in Equatorial Plane

Lagrangian o 1 - 2Mr 2 2Mrasin® 6 . gb——27°

2 0? 0? 2A

2 1 2M A
—% 0% — 5 |:(”I“2 + a?) sin? 0 + TCILO;m ] ¢’
Conservation laws: EF = —gepult = (1 — %> t QMCLQB
pt = —FE = const. o0 ' ' 2N 2
py = L = const. L = gqﬁuuu = — ai | (7"2—|—a2 | ¢ >¢
r r

=> radial equation

ror? = E%r® —rA —r(L* — a*E?) + 2M (aE — L)?



Circular Orbits at Equator &
ISCO In Kerr

ror? = B%r® —rA — r(L? — a*E?) + 2M (aFE — L)?

radial equation

Looking for double roots

o r2 —9Mr FavVMr L___Q/Mr(r2_2a,/Mr+a2)
T\/T2—3M7°:2&’\/M7“ N r\/rz—SMr::Qa\/Mfr

Looking for triple roots => ISCO radius

rms = M3+ Zs T/ (3—21)3+ 21 +225))

1/3 1/3 a \1/3
a= e (gm) (00 0-5)”)
\/M2' 21

S
||



Characteristic Radii in Kerr
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Summary - General Relativity

Spacetime is the set of all events, it has the structure of a pseudo-
Riemannian manifold with a metric tensor field g.

Einstein‘s gravity assumes the connection to be metric
Freely falling objects follow geodesics on this manifold

The Einstein tensor is coupled to the energy-momentum tensor of all
matter in the spacetime (including fields and vacuum).

Black Hole is predicted from the GR (solution of Einstein’s field equation).

From BH no hair theorem, BH has only three information (mass, angular
momentum, & charges)



