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General Relativistic Hydrodynamics

* The general relativistic hydrodynamics equations are obtained from the local
conservation laws of the stress-energy tensor, Tuv (the Bianchi identities), and

of the matter current density Jﬂ (the continuity equation):

V.(pu")=0 V,T* =0 equations of motion

(u=0,...,3)

V ,, : covariant derivative associated with the four dimensional
spacetime metric Guv

* The density current is given by jH — out

u" is the fluid 4-velocity and P is the rest-mass density in a locally
inertial reference frame.



Energy-Momentum Tensor

The energy-momentum (stress-energy) tensor for a non-perfect fluid is
defined as:

TH = p(1 + e)uu” + (p — uO)AH*" — 260H” + ¢ u” + ¢"u”

where ¢ is the specific internal energy density of the fluid, p is the pressure,
and 7"V is the spatial projection tensor, #/**"=u"u"+g"".
In addition, i and ¢ are the shear and bulk viscosity coefficients.

The expansion, ®, describing the divergence or convergence of the fluid
world lines is defined as ®=Vﬂu". The symmetric, tracefree, and spatial shear
tensor g, is defined by:

1 1
ot = S (Vauh® + Vau"h") — SOhH

Finally g, is the energy flux vector.



Energy-Momentum lTensor

In the following we will neglect non-adiabatic effects, such as viscosity or heat
transfer, the energy-momentum tensor is given that of a perfect fluid:

T = phu"u” 4+ pg"”

where we have introduced the relativistic specific enthalpy,

h=14¢€+ o
p
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General Relativistic
Magnetohydrodynamics

 GRHD equations + Maxwell equations

Vulpu") =0 VvV, T =0 V,*F" =0

where ¥, Faraday tensor may be constructed from electric and magnetic

fields £% B” as measured in a generic frame /¢ as
FHY — B EY _ Y EP — (_g)—l/an/)\cSZ/{)\B(S

where ;7’“”15: the fully-antisymmetric symbol and g : determinant of 4-metric

 The dual Faraday tensor is
*RY _ LBV _ 1V Bl _ (—g)_l/Qn“”MU,\Ea
* |deal MHD limit
Ftu, =0
K JW = put +oF" vy, o — 00



Energy-Momentum Tensor

* To eliminate the electric fields from the equations, it is convenient to introduce
vectors in the fluid frame.
* The electric field and magnetic field 4-vectors:

e = F*uy,, b = "F*u, wheree'=0and u,b" =0

* The Faraday tensor is
)l _(_g)—1/277,Lu/)\5u>\u(S

*FHY = Py — bYuM

* Energy-momentum tensor in ideal GRMHD is given by

1
TH = (ph + b*)uru” + (p + 562> gh’ — b'o”

where p? = p¥p,, denoting the square of the fluid frame magnetic field
strength as p2 = B2 — F~

uv __ v 8%
I o Tﬂuid + TEM



4-magnetic field

* Transformation between 5" and B*

W ’ Q

b B* + ab®u’

* Faraday tensor can be expressed by B" provides evolution equation of
magnetic field (induction equation)

By + BYu#

* RV
W

* The time component of Maxwell equation leads to the constraint of
0i(v7B') =0

* The scalar ?

B? +a?(b)? B2 . .
2 _ | ,,. 2 1
b = 7 = 773 (B"v;) B? = B'B,




Conservation laws

» Conservation laws with respect to an explicit coordinate chart =" = (330, ZCZ)

1 0
— 5o (V=aou) =
1 0

where the scalar x¥ represents a foliation of spacetime with hyper surfaces
(with coordinates x’) . where, g=det(g,,), and "/ \ are the Christoffel

symbols.



Conservation laws

* The system formed by the eqs must be supplemented with an equation of
state (EOS) relating the pressure to some fundamental thermodynamical
guantities, e.g.

p = p(p,€) ideal EoS: p = (I' — 1)pe

1
oolytropic EoS: p=kp , =1+ ~

* In the “test-fluid” approximation (fluid’s self-gravity neglected), the
dynamics of the matter fields is fully described by the previous conservation
laws and the EOS.

* When such approximation does not hold, the previous equations must be
solved in conjunction with Einstein’s equations for the gravitational field
which describe the evolution of a dynamical spacetime.

(Newtonian analogy: Euler’s equation + Poisson’s equation)



Solving GRMHD Eqgs on
Computer

* General relativity states that our world is a 4D and curved spacetime.

« The GRMHD equations describe its dynamics in 4D curved spacetime.

 How to solve the GRMHD equations numerically?

* Prominently, there is no a priori concept of “flowing of time”, time is
just one of the dimensions, and on the same level as space

dimensions...

e There is a successful approach: 3+1 formulation.



Foliate the 4D Spacetime

» Spacetime is foliated with a set of non-intersecting space like hypersurfaces 2.
Within each surface distances are measured with the spatial 3-metric.

The time-like unit normal vector to the

A / t + dt hyper surface: normalization condition
B . n, = —afl, = —aV,t, (nn, = —-1)

i —>«1" (t + dt)

xt — Bidt

Yt d an o: lapse function, €),: the direction of time
t
> . The observer moving with 4-velocity n# is
called Eulerian
* Any vector VH may be projected in its temporal component: V" = —n, V¥

and spatial component: 1 V¥ = (g8 4+ n*n,)V"
* 3D spatial metric associated to each hypersurface:

Y =1 Juv — Juv =+ TV Ty



Foliate the 4D Spacetime

* We must ensure that when going from one hypersurface X at time ¢ to
another X at time ¢+df, all the vectors originating on 2; end up on 2,1 4.

* We must land on a single hypersurface.

A  The most general of such vectors
/ Hand that connect two hypersurfaces is
3 |

Tt — Bidt$— o2 (t + dt) tHH — nt i 6M
E(—I—d t CEls . . .
/ where f is any spatial shift vector.
5“ — (0,52) 5’“’”,“ = ()
= unit vector components

My = (_aaOi)v n* = (1/0{7 _67:/0‘)



Line element in 3+1 Form

* Generic line element in 3+1 decomposition: (t,27)

ds® = —(a? — B;8")dt* + 2B;dx"dt + ~;;dx" da?

* when 3¢ =( = dz* the lapse
measures the proper time, dr,

i
/ t+dt between two adjacent hyper surfaces:
. G+ di) dr? = o (t, 27)dt?

t * shift vector measures the change
of point from two hyper surfaces

*/Ei—l—dt = xy — B'(t, 2 )dt
» the spatial metric measures distances
between points on hypersurface

dli* = ~;;dz' dz’



Line element in 3+1 Form

 Covariant and contravariant metric can be written as

_ ( —a’ + BB B )
Tu Bi Yij

9’“"’:(_1./0‘2 B )
Bila 4 — i fo?

V75 = 0y where g = det(gu). v = det(qy)



Spatial 4-velocity

* The spatial 4-velocity v measured by Eulerian observer is given by the ratio
between the projection of 4-velocity u in the space orthogonal to n, i.e., fyzu“ —
and Lorentz factor of u as measured by n, —nuu“ — aut

* The spatial 4-velocity measured by Eulerian observer is

. Lyt 1 v .
vt =0, UZZVM :—<u—+ﬁz>

aut o \ u
— Bt g = e W Ty W J
. 2 i
* using u'u, = —1 VY = v
1 .
au’ = —n ut = — =W u;=W(—a+ ;v
V1 —viv,

* rewritten spatial 4-velocity

; uilﬁi_l u Z. U Yy
UV — I —_(_+5) Uj W

W « a \ ut
* transport velocity

u'Jut = av' —




Fulerian Observer

Eulerian observer: at rest on the hypersurface; moves from 2, to 2;; ; along the
unit normal vector. Speed given by: . 1 (u" 57;)

—+

vV = —
(87

+r "

coordinate

+ line

_~Eulerian
_~" observer .
208 .
n
2.9 ’




3+1 Valencia formulation
continuity equation

* Develop 3+1 formulation of general relativistic hydrodynamic equations.
* First consider continuity equation
1
Viu(pu") = —0,(v/—gpu"
,U( ) \/jg ,u( )
1 i
= [0V —gpu') + Bi(v/—gpu')] = 0

—9

z

e conserved variable

D = —putn, = pau® = pW

* rewrite the continuity equation
Oi(yAD) + &il\AD(av' — )] = 0
0:(v4D) + 0i[y7DV'] = 0 V= av' - §°




3+1 Valencia formulation
energy-momentum tensor

* Write the energy-momentum tensor in terms of quantities measured by normal
observer in 3+1 decomposition of spacetime.

T = phutu” 4+ pg"”

= UnHn” 4+ SHn" + S“nt* + WHY
where

U = nunyT“”i conserved energy density as the component of 7 fully projected
along the normal unit vector to the spatial hyper surface

W %ﬁj THY . spatial variant of energy-momentum tensor as the projection
of 7'in the space orthogonal to n (pure spatial 4=>3)

St = VZ"%TW : contravariant 3-momentum density in the Eulerian frame as the
mixed parallel-transverse component of 7' (spatial 4=> 3)



3+1 Valencia formulation
energy-momentum tensor

* 4-velocity and metric in its 3+1 decomposed form
ut =W(nt +o0t)  g'" =" —ntn”
* In this way, we obtain
TH = phW2(n" + v")(n” +n") + p(** — n*n”)

» After rearranging terms,

WH = phW2uFv” + pyH”.
St = phW?2uH,
U = phW?—p
Here v/=0,
W4 = phW2'v! + pyY,
S' = phW?',

U = phW?—p



3+1 Valencia formulation
energy & momentum equation

* next step write the 4-divergence of a symmetric rank-2 tensor:
1 1

=0 (VT - 3T g

2
* Applying energy-momentum tensor and using the conservation of energy and
momentum: | 1

0, (v/—gTH) = =T+*9,
\/jg ,LL( g l/) 2 g,LL)\
* Applying decomposed form, the conversation of momentum equation:
) ) 1 1%
O0c(v/7S;) + Oilva(aWj — B°5))] = 5 v/ —=gT"" 99,

 The energy equation is obtained from
V,.(T"n,)-THV,n, =0

o1 =g

* Replacing energy-momentum tensor in decomposed form

O (VAU) + 0i[\/7(aS" — BU)] = —/—gT*"'V ,n,,




3+1 Valencia formulation
source term

There are source term on right hand side in energy and momentum equations.
Rewrite source term in momentum equation as

1 U 1 7 1 1 v
§V—QT“ digur = V=9 <§W kaj%k + 5"'n" 059 + §Un“n ng)

| 1 .
— \/?g <§W7“k8]%k —+ aSzf?jBZ — U(‘? In O()

where we used 9;g,, =TI}, 9ux + 5, 9r0

v
Rewrite source term in energy equation as
—\/—gT“”VMn,, = v/ —g(KijWij — SZ&L In a)
where K,y Is extrinsic curvature.
 |f spacetime is stationary

| . -
W™ K, = §W2k5‘73j%k + Wi 0;8°



3+1 Valencia formulation

hyperbolic system

0:(\AU) + 0;(VTF") = \/7S

conserved variables

U =

S;

T

source term

S =

W
Si

3 aW™ 073, + 8;0;8' — U0;ax
| sWBI 05k + W] 0;8° — 5700

. F*

numerical flux

' V'D
CKW;’ — BZSj

I a(S* —v'D) — B'1 |

0

phW?2v'v? + py",
phW?y?,

phW? — p



3+1 Valencia formulation

hyperbolic system

O(VAU) + 0;(V=gF') = Vg8

conserved variables numerical flux

Yet another 3+1 Valencia form

D | D" y | ,
U = Sj - F' = Sjﬂz—l—p5; v =" _6/04
T I 70" + pov' )

source term

0
S=| T"(0ugvi —T7,95)
a(TM0,Ina —THTY) )
D = pW
Sj — ,OhWQUj

T = phW*—p—D



Recovering special relativity &
Newtonian limits

Full GR

Oy (/W) + 0;(v/—gpW ') = 0

Oy

(
Ot (/YPhW2v;) + i [/ —g(pW *v'"v; +p7;-)] = (1/2)v/—gT"" 0; 9,
VA (phW? = p)] + 0i(v/—gphW?uv') = —/—gT"*'V yun,

(shift vector = 0)

%

O (pW) + 0;(pWr") = 0
Oy (phW2v") + 0;(pW2v'v? 4 pé*) = 0
O (phW?= — p) + 0;(phW?v") = 0

Minkowski

(covariant and
contravariant is same)

Newtonian

(remove relativistic

04 (p) + di(pv") = 0
O (pv") + 0;(pv*v? 4 pé™) =0
correction) Ot (pe + %,0?}2) + 0;|(pe + %pvQ +p)v'] =0




Eigenvalues (characteristic speeds)

e Numerical schemes based on Riemann solvers use the local characteristic
structure of the hyperbolic system of equations.

* The eigenvalues (characteristic speeds) are all real (but not distinct, one
showing a threefold degeneracy), and a complete set of right-eigenvectors
exists. The above system satisfies, hence, the definition of hyperbolicity

o(,7F') OF"
(VyU)  oU

Eigenvalues (along the x direction) 4™

Jacobian A =

Ao = v* (triple)
/ _ 1 x 2 2 Tx 2.2\ vy 2
Ve = e (- D E e/ AhE R — e (- )]

A =a\" — " (GR correction)




Eigenvalues (characteristic speeds)

Special relativistic limit along x-direction

Ny = U°
1 — —
N = 07 (1 — ) £ e\ (1 — v2)|y*% (1 — v2e2))— vroe (1 — cg)]}
1 £ v2c?
yak
N7

coupling with transversal components of the velocity
(important difference with Newtonian case)

Even in pure 1D case:
v=(v",0,0) = \g =0v", AL =

\t+x=0 (-x= 0/

Zt+dt

V¥t Cg

1 &= v%cy

Recall Newtonian (1D) case:

)\0 :”Ux, )\j: — UV I Cg
For causal EOS sound cone
lies within light cone

2




3+1 form of GRMHD equations

3+1 Decomposed energy-momentum tensor in GRMHD

conserved energy density

U = T""n,n,
1
= phW? —p+ 5(E2 + B?)
1

= phW* —p+ S[B* (1 +0°) = (B'v;)"]
3-momentum density
Si = A'n"Tu, = phW?v; + nijr/7E’ B*
=  phW?v, + B%v; — (ijj)Bz-
spatial variant of energy-momentum tensor

W = vufyT

= pW?v! — E'E? + B'B’ + {p + 5(E2 + BQ)} "

Sivj —|—pt0t’}/ij — (BZB])/I/V2 — (Bkvk)?}iBj



3+1 form of GRMHD equations

hyperbolic system

0:(\AU) + 0;(VTF") = \/7S

conserved variables numerical flux
"D ] i ViD ] V' =av' —
B S i QW;—ﬁiSj
U= T | B = a(S* —v'D) — Bt
B . V'BI—-BWI
source term
_ | 0 | )
g — 1 %a'wzéajﬂﬁ;k + S@(‘?JBZ - U(?jOé
§W7’kﬁjﬁﬂik + Wf(")’jﬁz — Sjﬁjoz
0
W9 = S 4 puy = (B'BY) /W2~ (B o' B
Sz' — IOhWZ”UZ' -+ BZUZ' — (Bj?)j)Bi

U = phW? —p+ 2[B*(1+v°) — (Bvj)?]



3+1 form of GRMHD equations

hyperbolic system

O(VAU) + 0;(V=gF') = Vg8

conserved variables

U —

D
S;

T

BJ

source term

S —

. F*

0

numerical flux

TH (Ougvs — T'y,.955)
oz(T“O)(‘?M Ina — TWFBM
07

Yet another 3+1 Valencia form

D
Sjv* + p*ds — b; B /W 7 =" — B
T0° + p*v* — ab’BY /W

"B’ — ¢ B |
] D = pW
S, = ph*W?v; — ab;b°
T = ph*W?—p—-a*(t’)? =D
] b B* + ab®u’ 0 _ W (B'v;)

%74 Q



3+1 form of GLM-GRMHD
eguations
(yAU) + 0;(VAF') = 7S

hyperbolic system

conserved variables

D
9j
U=| 7 |; F"
BI
¢

source term

numerical flux
VD
OéW;’ — ﬁZSj

= a(S" —v'D) — Bt

ViBi — ViRt — BigJ
0B — ¢’

0

5aW™ 0y + S;0;6" — UD;a
S = SW B0,y + W 0; 8" — S70;0x

—B'0;} — a7 0;¢

—akd — @i — 57" ¥ Ok + B'Oia

V= av® — 3

* For magnetic monopole-
control on AMR-grids, we
solve the “Augented
Faraday’s law”

Vo (™ — ¢g™) = —knf'o

it is called Dedner cleaning,
constraint dampening or
GLM approach




Eigenvalues in MHD

* Wave structure Newtonian MHD (Brio & Wu 1988): 7 physical waves

Two Alfven waves: \,, = A\, = v; £ v,
Two Fast magnetosonic waves: A¢, = Ay, = v, = vy
Two Slow magnetosonic waves: \;, = \;, = v, + v,

One Entropy wave: )\, = A\, = v, A < Aa_ <Al <A< Ag, < Ag, < Ap
(

1 B2 4+ B2 4+ B2 B2 + B2 + B2\* B2 B2
goorfesmemen, R @ |
2 p p p p

\

« Wave structure for relativistic MHD (Anile 1989): roots of the characteristic
equation.

* Only entropic waves and Alfvén waves are explicit.
 Magnetosonic waves are given by the numerical solution of a quartic equation.



Eigenvalues in GRMHD

* Simplified dispersion relation

w? = a’k?

2 _ 2 2 2,2

a”~ =c; + v, — C,U,
2

Cz_@ 2 b

p— ] ’Ua p—

> ph ph + b?

« But simplified dispersion relation overestimate the wave speed in the fluid frame
by up to a factor of 2, yielding a slightly more diffusive behavior

* Another simplified isotropic dispersion relation (similar to SRMHD case)

M= ((1—a®)' £/a2(1—0?)[(1 — v%a?)y — (1 — a?)(v")2])/(1 — v*a®)
A =a)® — ' (GR correction)




Numerical Simulation Tips

» 3+1 form of GRMHD equations are set of hyperbolic
equations. We can apply HRSC scheme.

» Difference from Newtonian MHD is that the calculation of
primitive variables from conserved variables is not
straightforward, need numerical calculation such as
Newton-Raphson method.



C to P inversion procedure

e The GRMHD code require a calculation of primitive variables from
conservative variables.

* The forward transformation (primitive - conserved) has a close-form
solution, but the inverse transformation (conserved - primitive)
requires the solution of a set of five nonlinear equations

D = . .
pV[: , ) b _ B* + ab’u’ b0 _ W(B*v;)
Sj — ,Oh %4 U5 — Ckbjb — W ) — v
T = ph*W?—p—-a*(t")* =D
Method

 Noble’s 2D method (Noble et al. 2005)
 Mignone & McKinney’s method (Mignone & McKinney 2007)
e etcC

Need numerical method (e.qg., Newton-Raphson) to solving nonlinear
equations



Horizon-penetrating form of BH
metric

Boyer-Lindquist coordinates of Black Hole metric has coordinate
singularity at black hole event horizon radius.

The metric term is diverge. We can not solve numerically at event horizon.
=> Should set inner boundary outside BH event horizon.

But we can choose particular observer, such coordinate singularity can
remove.

Such BH metric form is so-called horizon-penetrating form

In Schwarzschild BH: Eddington-Finkelstein coordinates, Lemaitre
coordinates. In Kerr BH: Kerr-Schild coordinates



Kerr-Schild BH metric

line element

ds? = G dxt dz”

in spherical coordinate:

(1 2M’r> IMr 2Mar sin® 0
git — — — s Gtr = grt = v Gt — Gt — —
02 PE ¢ ¢ PE
2Mr 5 2Mr 5 Asin? 6
9rr = 1A ,02 y r¢p = Jopr — —ASI 01+ p2 y» 900 — P 5 Yoo — ,02

p> =r?+a’cos’l, A=r*—2Mr +a*, A= (r*+a*)* —a*Asin*0

Note: original Kerr-Schild coordinate is written in Cartesian
coordinate



Kerr-Schild BH metric

line element (3+1 decomposed form) G = ( —a? + B8 B )

2 25,9 g ; ] ] bi T
ds® = —a“dt” + v;;(dz" + B'dt)(dz’ + B dt)

g = ( —lja® B/ )
s Bila 7 =B o’
o= (1 | 2Mr 5T: 2MT/IO 5722%’]’53
P> ’ 1+ 2Mr/p?
. 2Mr 5 A?sin? 0
77“7“ — I y /799 — 10 y /7 — y
02 PP PE
, 2Mr
Vrd = Yor = —0a sin” @ (1 - 2 )

P> =r?+a’cos’l, A=1r*—2Mr+a*, A= (r*+a*)? —a*Asin’6



Kerr BH metric

For the comparison with Kerr-Shild metric

line element (3+1 decomposed form)

ds* = —a’dt* + v, (dz’ + B'dt)(dz? + (7 dt)

2A 2M
o = —IO y 6¢ = —W = _gt_qb p— ar
A I A
- p? o B Asin® 0
VTT—A7799—/077¢¢— 02

g

—a? + ;6" B >
Vij

9““:( B,

ur ( —1/042
— 57’/04
Bi = %;jﬁj

. B
V9 =B o

p> =r?+a’cos’l, A=r*—2Mr +a*, A= (r*+a*)* —a*Asin*0

)



Numerical Tests

* Various set of numerical tests for validate the code accuracy and
performance in SRMHD/GRMHD:

* Shock-Tube (comp. exact solution, check convergence) in SRMHD
 Magnetic loop advection (check div. B problem) in SRMHD

« blast wave propagation w./w.o. Magnetic field in SRMHD

* Jet propagation in SRMHD

* Magnetic reconnection (checking resistivity) in SRRMHD

« Spherical (Bondi) accretion in GRHD/GRMHD

e Stationary hydrodynamic torus in GRHD

 Magnetized torus with toroidal B-field in GRMHD



Bondi Accretion

Bondi-accretion, Schwarzschild-BH, SS-coord; t=0 (solid) and t=100 (dashed); N, =200
10— 020

—0.25RK

- —0.30H

—0.35} %

10—

/Ty /Ty
1D Magnetized Bondi accretion in GLM-GRMHD using Schwarzschild coordinates with
r.= 8, B.= 1. The black solid line shows the initial primitive variables and the symbols the

state at t = 100M.

* Bondi accretion is analytical solution of
spherical accretion flow onto
Schwarzschild BH (Hawley et al. 1984)

Error

 Pure radial B-field does not affect flow
structure




Stationary
Hydro torus

| [{—0.8

There are several solutions for
stationary hydro-equilibrium torus with
constant or different angular
momentum (Fishbone & Moncrief
1976, Hawley et al. 1984, Font &
Daigne 2002 etc.)

2D/3D stationary hydro torus in Kerr-
Schild coordinates

Error

5 10 15 20 25 30 35 40

10"
10 —
103 —
10™ —

10° |

0.8

0.0

41-1.6

4 -2.4

—-3.2

-4.0

-4.8

] ] ] ] ] ] ]
5 10 15 20 25 30 35 40

0.8

0.0

1| [{—-0.8

4-1.6

4—-2.4

—-3.2

—-4.0

—4.8




Adaptive Mesh

two-, quad-, or oct- tree AMR: Split

the domain in blocks, e.g.
10x10x10 cells.

The mesh is a “forest”: Each base
block has branches pointing to
higher levels. A leafis a
computational block.

A space-filling curve (Morton/Z-
order) uniquely runs over the
blocks for integration

Load-balancing is done by cutting

the space-filling curve

f

(1,3)

(2,3)

(1,2)

(5,4)

(5.3) (6,3)

(1,1

(3.1)

(4.1)

=

Fairly standard: Paramesh, Athena++...



AMR Performance in GRHD:
rec0|||ng BH Meliani et al.( 2017)

log,op t=0.0 Shocks (vyy—vgg) t=0.0

| | | | | 0.05

200 200 - 4
0.04

100 100 |- =
0.03

0 0| —
— 0.02

~100 ~100 | .
-4 0.01
| | | | | J 0.00

-200 -100 0 100 200

-200 -100 0 100 200

« 2D/3D GRHD simulations of recoiling BH with sub-Keplerian disk produced by the
merger of supermassive BH binary

* Asymmetry induced by kicked (recoiled) disk and spiral shock structure is developed.
* AMR is functionally worked for spiral shock region.



AMR Performance in GRHD:
rECOlllng BH Meliani et al.( 2017)

t 200000 t =20000.0

I 0.05 ] , . , , 0.05
200 | 4 200 | d
/ \ 0.04 //___, \ 0.04
100 | 2l 100 | ; S 5
( \ g 003 _ fg \ 4003 _
o gg | 1 I o |\ | (s |
4002 = \ N ,.) 0.02 =
\ /l
~100 | \ - 100 | \ -
\ - / 001 P s 001
= . & ' _\.“'\__-\- T -;--'/ ] '
-200 |- B -200 |- TR -
L | d | 1 < 0.00 | ! | ! ! Jd 0.00
-200 -100 O 100 200 -200 -100 O 100 200

« 2D/3D GRHD simulations of recoiling BH with sub-Keplerian disk produced by the
merger of supermassive BH binary

* Asymmetry induced by kicked (recoiled) disk and spiral shock structure is developed.
* AMR is functionally worked for spiral shock region.



Coupling with GRRT code

* @GR radiation transfer calculation is using ray-tracing method
* Including thermal & non-thermal radiation process
* Fully-coupled with BHAC & RAISHIN codes (made pipeline)
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* Combining multiple images, we can make a movie
* Integrating over all images we may also contract the lightcurve



Radiation Image in 3D Recoiling BH

1I=60 deg

Total intensity

Meliani et al.( 2017)

Based on 3D GRHD simulation of recoiling
BH by BHAC

* Only consider thermal radiation (because
no B-field)

* C(Calculations are performed at multiple

observer frequencies —e.g., radio, optical,
IR, X-ray

Lightcurve of total flux

3D recolling black hole (a=0.5): Un-normalised Lightcurves (Total Flux, I=0,1%, i=60°, i=90°; RAISHIN)
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Summary

 The GRMHD equations are composed by the conservation laws of
density and energy-momentum coupling with Maxwell equations.

« The GRMHD equations describe its dynamics in 4D curved spacetime.

* Solving GRMHD equations numerically, we should use 3+1 formalism
to decompose the time and space.

 Valencia formulation is well-used 3+1 form of GRMHD equations.

e Relativistic MHD simulations need additional numerical calculation of
conserved variables to primitive variables.



