Hydrodynamics and Magnetohydrodynamics: Solutions of the exercises in Lecture I

Yosuke Mizuno
Winter Semester 2018

Lecture I, Exercise 1.

Prove the Newtonian H-theorem, that is,

$$
\begin{equation*}
\frac{\partial f_{0}}{\partial t}=\Gamma\left(f_{0}\right)=0 \tag{1}
\end{equation*}
$$

where f_{0} is the equilibrium distribution function. Condition (1) is fully equivalent to the condition

$$
\begin{equation*}
f_{0}\left(\overrightarrow{\boldsymbol{u}}_{2}^{\prime}\right) f_{0}\left(\overrightarrow{\boldsymbol{u}}_{1}^{\prime}\right)-f_{0}\left(\overrightarrow{\boldsymbol{u}}_{2}\right) f_{0}\left(\overrightarrow{\boldsymbol{u}}_{1}\right)=0, \tag{2}
\end{equation*}
$$

where $f_{1,2}:=f\left(t, \overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{u}}_{1,2}\right), f_{1,2}^{\prime}:=f\left(t, \overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{u}}_{1,2}^{\prime}\right)$ are the distribution functions before and after the collision at time t and position $\overrightarrow{\boldsymbol{x}}$.

Here we introduce Boltzmann's H function as

$$
\begin{equation*}
H(t)=\int f(t, \overrightarrow{\boldsymbol{u}}) \ln (f(t, \overrightarrow{\boldsymbol{u}})) d^{3} u \tag{3}
\end{equation*}
$$

Taking a time derivative gives

$$
\begin{equation*}
\frac{d H(t)}{d t}=\int \frac{\partial f(t, \overrightarrow{\boldsymbol{u}})}{\partial t}[1+\ln f(t, \overrightarrow{\boldsymbol{u}})] d^{3} u . \tag{4}
\end{equation*}
$$

If $\partial f / \partial t=0, d H / d t=0$. So $d H / d t=0$ is necessary condition for $\partial f / \partial t=0$.
Next, we consider binary collisions, which gives

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\int d^{3} u_{2} \int d \Omega \sigma(\Omega)\left|\overrightarrow{\boldsymbol{u}}_{1}-\overrightarrow{\boldsymbol{u}}_{2}\right|\left[f\left(\overrightarrow{\boldsymbol{u}}_{2}^{\prime}\right) f\left(\overrightarrow{\boldsymbol{u}}_{1}^{\prime}\right)-f\left(\overrightarrow{\boldsymbol{u}}_{2}\right) f\left(\overrightarrow{\boldsymbol{u}}_{1}\right)\right]=0 \tag{5}
\end{equation*}
$$

By adding Eq. (5) in Eq. (4) we obtain

$$
\begin{equation*}
\frac{d H(t)}{d t}=\int d^{3} u_{1} \int d^{3} u_{2} \int d \Omega \sigma(\Omega)\left|\overrightarrow{\boldsymbol{u}}_{1}-\overrightarrow{\boldsymbol{u}}_{2}\right|\left(f_{2}^{\prime} f_{1}^{\prime}-f_{2} f_{1}\right)\left[1+\ln f_{1}\right]=0 \tag{6}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{d H(t)}{d t}=\int d^{3} u_{1} \int d^{3} u_{2} \int d \Omega \sigma(\Omega)\left|\overrightarrow{\boldsymbol{u}}_{2}-\overrightarrow{\boldsymbol{u}}_{1}\right|\left(f_{2}^{\prime} f_{1}^{\prime}-f_{2} f_{1}\right)\left[1+\ln f_{2}\right]=0 \tag{7}
\end{equation*}
$$

because the cross section $\sigma(\Omega)$ is invariant under the swapping of u_{1} with u_{2}. Thus we can add the two equations to obtain

$$
\begin{equation*}
\frac{d H(t)}{d t}=\frac{1}{2} \int d^{3} u_{1} \int d^{3} u_{2} \int d \Omega \sigma(\Omega)\left|\overrightarrow{\boldsymbol{u}}_{2}-\overrightarrow{\boldsymbol{u}}_{1}\right|\left(f_{2}^{\prime} f_{1}^{\prime}-f_{2} f_{1}\right)\left[2+\ln \left(f_{1} f_{2}\right)\right]=0 \tag{8}
\end{equation*}
$$

Since for each collision there is an inverse collision with the same cross section, the integral (8) is invariant under change of $\overrightarrow{\boldsymbol{u}}_{1}, \overrightarrow{\boldsymbol{u}}_{2}$ with $\overrightarrow{\boldsymbol{u}}_{1}^{\prime}, \overrightarrow{\boldsymbol{u}}_{2}^{\prime}$. Similarly f_{2}, f_{1} and f_{2}^{\prime}, f_{1}^{\prime}, i.e.

$$
\begin{equation*}
\frac{d H(t)}{d t}=\frac{1}{2} \int d^{3} u_{1}^{\prime} \int d^{3} u_{2}^{\prime} \int d \Omega \sigma^{\prime}(\Omega)\left|\overrightarrow{\boldsymbol{u}}_{2}^{\prime}-\overrightarrow{\boldsymbol{u}}_{1}^{\prime}\right|\left(f_{2} f_{1}-f_{2}^{\prime} f_{1}^{\prime}\right)\left[2+\ln \left(f_{1}^{\prime} f_{2}^{\prime}\right)\right]=0 \tag{9}
\end{equation*}
$$

By adding together Eq. (8) and Eq. (9) using $d^{3} u_{1}^{\prime} d^{3} u_{2}^{\prime}=d^{3} u_{1} d^{3} u_{2},\left|\overrightarrow{\boldsymbol{u}}_{2}-\overrightarrow{\boldsymbol{u}}_{1}\right|=$ $\left|\overrightarrow{\boldsymbol{u}}_{2}^{\prime}-\overrightarrow{\boldsymbol{u}}_{1}^{\prime}\right|$, and $\sigma(\Omega)=\sigma^{\prime}(\Omega)$ we obtain

$$
\begin{equation*}
\frac{d H(t)}{d t}=\frac{1}{4} \int d^{3} u_{1} \int d^{3} u_{2} \int d \Omega \sigma(\Omega)\left|\overrightarrow{\boldsymbol{u}}_{2}-\overrightarrow{\boldsymbol{u}}_{1}\right|\left(f_{2}^{\prime} f_{1}^{\prime}-f_{2} f_{1}\right)\left[\ln \left(f_{1} f_{2}\right)-\ln \left(f_{1}^{\prime} f_{2}^{\prime}\right)\right]=0 \tag{10}
\end{equation*}
$$

Using $x=\left(f_{1} f_{2}\right) /\left(f_{1}^{\prime} f_{2}^{\prime}\right)$, this is changed to

$$
\begin{equation*}
\frac{d H(t)}{d t}=\frac{1}{4} \int d^{3} u_{1} \int d^{3} u_{2} \int d \Omega \sigma(\Omega)\left|\overrightarrow{\boldsymbol{u}}_{2}-\overrightarrow{\boldsymbol{u}}_{1}\right|\left(f_{2}^{\prime} f_{1}^{\prime}\right)[(1-x) \ln x]=0 \tag{11}
\end{equation*}
$$

The integrand of Eq. (11) is never positive for $x \geq 0$, which implies that

$$
\begin{equation*}
\frac{d H}{d t} \leq 0 \tag{12}
\end{equation*}
$$

As a result, $d H / d t=0$ only when

$$
\begin{equation*}
\left(f_{2}^{\prime} f_{1}^{\prime}-f_{2} f_{1}\right)=0 \tag{13}
\end{equation*}
$$

Lecture I, Exercise 2.

From the properties of H, we can understand the Boltzmann's H function corresponds to the entropy of thermodynamics. Time derivative of H shows the H -theorem is fundamentally irreversible processes from microscopic mechanism. H value is never changed sign (H is never positive).

