Hydrodynamics and Magnetohydrodynamics: Solutions of the exercises in Lecture X

Yosuke Mizuno
Winter Semester 2018

Lecture X, Exercise 1.

We start from the conservation equations for energy and linear momentum

$$
\begin{equation*}
\nabla_{\mu} T^{\mu \nu}=0 \tag{1}
\end{equation*}
$$

where the energy-momentum tensor is given by

$$
\begin{equation*}
T^{\mu \nu}=(e+p) u^{\mu} u^{\nu}+p g^{\mu \nu} . \tag{2}
\end{equation*}
$$

Assuming for simplicity that the flow is one-dimensional and the spacetime is flat, i.e. $u^{\alpha}=W(1, v, 0,0), W=\left(1-v^{i} v_{i}\right)^{1 / 2}$, and $g_{\mu \nu}=\eta_{\mu \nu}=(-1,1,1,1)$, we can rewrite Eq. (1) as

$$
\begin{gather*}
\partial_{t} T^{t t}+\partial_{x} T^{x t}=0 \tag{3}\\
\partial_{t} T^{t x}+\partial_{x} T^{x x}=0 \tag{4}
\end{gather*}
$$

The relevant components of the energy-momentum tensor are given by

$$
\begin{align*}
T^{t t} & =(e+p) u^{t} u^{t}+p g^{t t} \\
& =(e+p) W^{2}-p \\
& =W^{2}\left(e+p v^{2}\right) \tag{5}\\
T^{t x} & =(e+p) u^{t} u^{x} \\
& =(e+p) W^{2} v \tag{6}\\
T^{t t} & =(e+p) u^{x} u^{x}+p g^{x x} \\
& =(e+p) W^{2} v^{2}+p \\
& =e v^{2} W^{2}+p W^{2} . \tag{7}
\end{align*}
$$

As a result, Eqs (3) and (4) are written as

$$
\begin{align*}
& \partial_{t}\left[\left(e+p v^{2}\right) W^{2}\right]+\partial_{x}\left[(e+p) W^{2} v\right], \tag{8}\\
& \partial_{t}\left[(e+p) W^{2} v\right]+\partial_{x}\left[\left(e v^{2}+p\right) W^{2}\right] . \tag{9}
\end{align*}
$$

Lecture X, Exercise 2.

Assuming the fluid is initially uniform with energy density, pressure and velocity given by e_{0}, p_{0}, and v_{0}, we can introduce the perturbations

$$
\begin{equation*}
e=e_{0}+\delta e, \quad p=p_{0}+\delta p, \quad v=v_{0}+\delta v=\delta v \tag{10}
\end{equation*}
$$

Next we assume that the initial velocity v_{0} is zero and insert the perturbations (??) in equations (8) and (9) to obtain the linearized hydrodynamical equations where we drop off 2 nd-order terms, e.g. $\delta X \delta Y$, and assume that the initial state is static and uniform, i.e., $\partial_{t} X_{0}=\partial_{x} X_{0}=0$. In this way we obtain

$$
\begin{align*}
\partial_{t}\left\{\left[\left(e_{0}+\delta e\right)+\left(p_{0}+\delta p\right) \delta v^{2}\right] W^{2}\right\}+\partial_{x}\left\{\left[\left(e_{0}+\delta e\right)+\left(p_{0}+\delta p\right)\right] W^{2} \delta v\right\} & =0 \tag{11}\\
\partial_{t}\left(\delta e W^{2}\right)+\partial_{x}\left(e_{0} W^{2} \delta v+p_{0} W^{2} \delta v\right) & =0 \tag{12}\\
W^{2} \partial_{t} \delta e+W^{2}\left(e_{0}+p_{0}\right) \partial_{x} \delta v & =0 \tag{13}\\
\partial_{t} \delta e+\left(e_{0}+p_{0}\right) \partial_{x} \delta v & =0 \tag{14}\\
\partial_{t}\left\{\left[\left(e_{0}+\delta e\right)+\left(p_{0}+\delta p\right) W^{2} \delta v\right]+\partial_{x}\left\{\left[\left(e_{0}+\delta e\right) \delta v^{2}+\left(p_{0}+\delta p\right)\right] W^{2}\right\}\right. & =0 \tag{15}\\
\partial_{t}\left(e_{0} W^{2} \delta v+p_{0} W^{2} \delta v\right)+\partial_{x} W^{2} \delta p & =0 \tag{16}\\
W^{2}\left(e_{0}+p_{0}\right) \partial_{t} \delta v+W^{2} \partial_{x} \delta p & =0 \tag{17}\\
\left(e_{0}+p_{0}\right) \partial_{t} \delta v+\partial_{x} \delta p & =0 \tag{18}
\end{align*}
$$

Therefore the final set of linearized equations is

$$
\begin{array}{r}
\partial_{t} \delta e+\left(e_{0}+p_{0}\right) \partial_{x} \delta v=0 \\
\left(e_{0}+p_{0}\right) \partial_{t} \delta v+\partial_{x} \delta p=0 \tag{20}
\end{array}
$$

Taking a time derivative in both equations,

$$
\begin{align*}
\partial_{t}^{2} \delta e & =-\left(e_{0}+p_{0}\right) \partial_{x} \partial_{t} \delta v \tag{21}\\
\partial_{x}^{2} \delta p & =-\left(e_{0}+p_{0}\right) \partial_{x} \partial_{t} \delta v \tag{22}
\end{align*}
$$

and combining them we obtain

$$
\begin{align*}
& \partial_{t}^{2} \delta e-\partial_{x}^{2} \delta p \\
& =\partial_{t}^{2} \delta e-\partial x^{2}\left(\frac{\delta p}{\delta e} \delta e\right) \\
& =\partial_{t}^{2} \delta e-c_{s}^{2} \partial x^{2} \delta e \\
& =\left(\partial_{t}^{2}-c_{s}^{2} \partial x^{2}\right) \delta e=\square \delta e=0 \tag{23}
\end{align*}
$$

The one above is a wave equation with speed c_{s}, which we define to be

$$
\begin{equation*}
c_{s}^{2}=\left(\frac{\partial p}{\partial e}\right)_{s} . \tag{24}
\end{equation*}
$$

In other words, $\pm c_{s}$ is the speed at which the perturbations propagate as waves in the fluid and where the \pm sign reflects that the waves can propagate in either direction of our one-dimensional space.

Lecture X, Exercise 3.

The continuity and momentum equations can be written as

$$
\begin{align*}
\partial_{t}(\rho W)+\partial_{x}(\rho W v) & =0 \tag{25}\\
W \partial_{t}(W v)+W v \partial_{x}(W v) & =-\frac{1}{\rho h}\left[\partial_{x} p+W^{2} v \partial_{t} p+W^{2} v^{2} \partial_{x} p\right] \tag{26}
\end{align*}
$$

Here we introduce the similarity variable $\xi:=x / t$. The differential operators are given by

$$
\begin{equation*}
\partial_{t}=-\left(\frac{\xi}{t}\right) \frac{d}{d \xi}, \quad \partial_{x}=\left(\frac{1}{t}\right) \frac{d}{d \xi} . \tag{27}
\end{equation*}
$$

Using the similarity variable and the differential operators, the equations (25) and (26) are written as

$$
\begin{align*}
-\left(\frac{\xi}{t}\right) \frac{d}{d \xi}(\rho W)+\left(\frac{1}{t}\right) \frac{d}{d \xi}(\rho W v) & =0 \tag{28}\\
-\xi \frac{d}{d \xi}(\rho W)+\frac{d}{d \xi}(\rho W v) & =0 \tag{29}\\
-\xi \rho \frac{d}{d \xi} W-\xi W \frac{d}{d \xi} \rho+\rho W \frac{d}{d \xi} v+\rho v \frac{d}{d \xi} W+W v \frac{d}{d \xi} \rho & =0 \tag{30}\\
W(v-\xi) \frac{d}{d \xi} \rho+\rho(v-\xi) \frac{d}{d \xi} W+\rho W \frac{d}{d \xi} v & =0 \tag{31}\\
W(v-\xi) \frac{d}{d \xi} \rho+\rho W\left[W^{2} v(v-\xi)+1\right] \frac{d}{d \xi} v & =0 \tag{32}\\
(v-\xi) \frac{d}{d \xi} \rho+\rho\left[W^{2} v(v-\xi)+1\right] \frac{d}{d \xi} v & =0 \tag{33}
\end{align*}
$$

where we have used $W^{2}=1 /\left(1-v^{2}\right)$ and $d W=W^{3} v d v$. Similarly, for the other equation we have

$$
\begin{align*}
& \rho h W\left(\frac{\xi}{t}\right) \frac{d}{d \xi}(W v)-\rho h W v\left(\frac{1}{t}\right) \frac{d}{d \xi}(W v)= \\
&\left(\frac{1}{t}\right) \frac{d}{d \xi} p-W^{2} v\left(\frac{\xi}{t}\right) \frac{d}{d \xi} p+W^{2} v^{2}\left(\frac{1}{t}\right) \frac{d}{d \xi} p \\
& \rho h W\left(\frac{1}{t}\right)(\xi-v) \frac{d}{d \xi}(W v)=\left(\frac{1}{t}\right)\left(1-W^{2} v \xi+W^{2} v^{2}\right) \frac{d}{d \xi} p \tag{34}\\
& \rho h W(\xi-v)\left(W \frac{d}{d \xi} v+v \frac{d}{d \xi} W\right)=\left(1-W^{2} v \xi+W^{2} v^{2}\right) \frac{d}{d \xi} p \tag{35}\\
& \rho h W(\xi-v)\left(W+W^{3} v^{2}\right) \frac{d}{d \xi} v=\left(W^{2}-v^{2} W^{2}-W^{2} v \xi+W^{2} v^{2}\right)\left(\begin{array}{l}
\frac{d}{d \xi} \\
d \xi
\end{array}\right. \\
& \rho h W^{4}(\xi-v) \frac{d}{d \xi} v=W^{2}(1-v \xi) \frac{d}{d \xi} p \tag{37}\\
& \rho h W^{2}(\xi-v) \frac{d}{d \xi} v=(1-v \xi) \frac{d}{d \xi} p \tag{38}
\end{align*}
$$

As a result we obtain the following ordinary differential equations describing the selfsimilar flow in the rarefaction wave

$$
\begin{align*}
(v-\xi) \frac{d}{d \xi} \rho+\rho\left[W^{2} v(v-\xi)+1\right] \frac{d}{d \xi} v & =0 \tag{39}\\
\rho h W^{2}(v-\xi) \frac{d}{d \xi} v+(1-v \xi) \frac{d}{d \xi} p & =0 \tag{40}
\end{align*}
$$

