
Hydrodynamics and Magnetohydrodynamics: Solutions
of the exercises in Lecture XIII

Yosuke Mizuno
Winter Semester 2018

Lecture XIII, Exercise 1.
The gyro frequencies and Larmor radii are given by

ωc :=
qB

m
, (1)

rL :=
mv⊥
qB

, (2)

where v⊥ is the velocity perpendicular to the magnetic field. We assume the plasma
is in thermal equilibrium and the particles have the thermal velocity. Therefore the
velocity is given by

v⊥ ≈ vth =

√
kBT

m
. (3)

Here we compare the gyro frequencies with plasma frequencies which can be obtained

ωP =

√
4πnq2

m
. (4)

We list the results in different physical conditions (1 rad/s = 1/2π Hz).

ωc [Hz] rL (cm) ωp [Hz]
fusion machine electron 8.4× 1020 2.3× 10−13 2.3× 1012

proton 4.6× 1017 1.0× 10−11 5.3× 1010

Earth’s magnetosphere electron 8.4× 1014 2.3× 10−9 2.3× 106

proton 4.6× 1011 1.0× 10−7 5.3× 104

center of the Sun electron 8.4× 1022 3.0× 10−15 2.3× 1017

proton 4.6× 1019 1.3× 10−13 5.3× 1015

solar corona electron 8.4× 1016 7.4× 10−10 2.3× 108

proton 4.6× 1013 3.2× 10−8 5.3× 106

solar wind electron 8.4× 1011 2.3× 10−5 7.1× 104

proton 4.6× 108 1.0× 10−3 1.7× 103

neutron star’s atmosphere electron 8.4× 1028 2.3× 10−21 2.3× 1010

proton 4.6× 1025 1.0× 10−19 5.3× 10−8
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Lecture XIII, Exercise 2.
Consider the non relativistic motion of particles moving under the combined influence
of uniform magnetic and gravity fields. The equation of motion can be given as

d~v

dt
= ~g +

q

m
(~v × ~B), (5)

where m~g is the gravitational force on a particle of mass, m. This equation is identical
to that for motion in an ”effective” electric field and the same magnetic field. Thus in
this case, the effective electric field is written as

~Eeff =
m

q
~g. (6)

From the derivation of the ~E × ~B drift we know that ~vd = ~E × ~B/B2, the drift
component of the motion is given by

~vd =
m

q

~g × ~B

B2
. (7)

The drift velocity depends on both charge and mass. Electrons and ions are drift in
opposite direction, producing a current in the system. For the simple case of uniform
plasma consisting only of protons and electrons, the current density is given by

~j = −ne~vd,e + ne~vd,p, (8)

where ~vd,e and ~vd,p are the drift velocities of the electrons and of the protons, respec-
tively. From eq (7), the current density can then be expressed as

~j = ρ
~g × ~B

B2
, (9)

where ρ := nme + nmp.

Lecture XIII, Exercise 3.
Since the magnetic field does not produce a work on the particle, particle energy in a
static magnetic field is conserved. However, if magnetic field is time-dependent, there
must be an accompanying electric field

~∇× ~E = −∂
~B

∂t
. (10)

Clearly the electric field can not be uniform in the space and so we must expect that
electric field will change the particle’s energy. Here we focus on the motion normal to
the magnetic field. The perpendicular component of particle kinetic energy is given by

U⊥ =
1

2
mv2
⊥. (11)
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Taking a time derivative and expressing the acceleration of the particle in terms of the
electric fiedl, i.e.,

m
d~v⊥
dt

= q ~E. (12)

we obtain that
dU⊥
dt

= q~v⊥ · ~E. (13)

Expressing the perpendicular velocity as

~v⊥ =:
d ~X

dt
, (14)

where ~X(t) denotes the trajectory of the particle, we can rewrite eq (13) as

dU⊥
dt

= q
d ~X

dt
· ~E. (15)

The total change in U⊥ over the one cycle of the orbital motion is given by

∆U⊥ =

∫ P

0

q
d ~X

dt
· ~Edt, (16)

where P is period of the motion. The time variation of the magnetic field implies a time
variation in both the gyro radius and the gyro period. Therefore the orbit will not be
closed. However, if we assume that the change in the magnetic field during one period
of the circular motion is small compared to the magnitude of magnetic field, i.e., if

P

∣∣∣∣∣d ~Bdt
∣∣∣∣∣ =

2π

ωc

∣∣∣∣∣d ~Bdt
∣∣∣∣∣� | ~B|. (17)

then the time integral of eq (16) can be replaced by a line integral taken over a fictitious
circular orbit of the particle

∆U⊥ =

∮
q ~Edl. (18)

By using Stokes’ theorem, this can be expressed as

∆U⊥ = −q
∫

(
~~∇× ~E)ds, (19)

which shows that the surface integral follows the particle motion as for our assumption.
Using eq (10), we rewrite eq (18) as

∆U⊥ = |q|
∫
∂ ~B

∂t
ds, (20)

where the change in energy is in fact independent of the sign of the charge. If we
assume that the magnetic field is uniform, the surface integral is expressed as πr2

L,
then eq (20) yields

∆U⊥ = |q|πr2
L

d ~B

dt
. (21)
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As a result, the rate of change of energy per one gyration period is given by

dU⊥
dt

=
∆U⊥
P

=
1

2
|q|ωcr

2
L

d ~B

dt
. (22)
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