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Lecture II1, Exercise 1.

The Maxwell-Boltzmann (equilibrium) distribution function is considered in the fol-
lowing general form
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We recall the following integral identities.
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First we consider the number density n. Using Eq.(2),
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Using = (i — ip) and dii = du, Eq. (3) becomes
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Thus, the constant C' can be written as
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Next, we consider the specific internal energy e. Using Eq. (2),
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Using & = (@ — i) and da = du, Eq. (8) becomes
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Using Eq. (6), the internal energy can be written as
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Therefore the constant A can be found to be
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Using Eq. (11), the constant C' is also written as
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Lecture III, Exercise 2.
The specific internal energy is given by
3 kT
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Using Eq. (13), the constant A and C can be obtained
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Next, we put these two quantities into the general form of the Maxwell-Boltzmann
(equilibrium) distribution function Eq. (2). In this way we obtain
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Lecture III, Exercise 3.

Using a set of spherical coordinates (r, 6, ¢) in the velocity space, any distribution
function can be written as (du,duydu, = u? sin OdudOde)
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Next, we use the Maxwell-Boltzmann distribution function with zero macroscopic
velocity (i.e., ¥ = 0), which is given by
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The average speed v can be calculated as
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Now we introduce a new parameter = 2, so that taking a derivative we obtain
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The integral part of Eq. (19) becomes
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Therefore the average velocity is obtained to be
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Lecture II1, Exercise 4.

The most probable speed is the maximum of Maxwell-Boltzmann distribution func-
tion, that is, the one for which df /du = 0. We use the Maxwell-Boltzmann distribu-
tion function with zero macroscopic velocity in spherical coordinates (i.e., Eq. (18)).
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Taking a derivative of Eq (18)
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Considering only the second bracket, i.e.,
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and because the solution is u # 0, the only relevant term is the second one, i.e.,
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Therefore the most probable speed is
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