# Hydrodynamics and Magnetohydrodynamics: Solutions of the exercises in Lecture VI 

Yosuke Mizuno<br>Winter Semester 2018

## Lecture VI, Exercise 1.

The sound speed $c_{s}$ is given by

$$
\begin{equation*}
c_{s}^{2}=\left(\frac{\partial p}{\partial e}\right)_{s} . \tag{1}
\end{equation*}
$$

We consider the first law of thermodynamics with following forms,

$$
\begin{align*}
d p & =\rho d h-\rho T d s  \tag{2}\\
d e & =h d \rho+\rho T d s \tag{3}
\end{align*}
$$

Divide both equations and we get

$$
\begin{equation*}
\frac{d p}{d e}=\frac{\rho}{h} \frac{d h}{d \rho} \tag{4}
\end{equation*}
$$

Therefore eq (1) can be written as

$$
\begin{equation*}
h c_{s}^{2}=\rho\left(\frac{d h}{d \rho}\right)=\frac{d p}{d \rho} \tag{5}
\end{equation*}
$$

because $\rho d h=d p$ if $d s=0$.
We consider the pressure $p$ is a function of density and of the specific internal energy, $p=p(\rho, \epsilon)$. Taking derivative, we obtain

$$
\begin{equation*}
d p=\frac{\partial p}{\partial \rho} d \rho+\frac{\partial p}{\partial \epsilon} d \epsilon \tag{6}
\end{equation*}
$$

which can be divided by $d \rho$ to yield

$$
\begin{equation*}
\frac{d p}{d \rho}=\frac{\partial p}{\partial \rho}+\frac{\partial p}{\partial \epsilon} \frac{d \epsilon}{d \rho} \tag{7}
\end{equation*}
$$

From the first law of thermodynamics if $d s=0$,

$$
\begin{equation*}
d e=h d \rho \tag{8}
\end{equation*}
$$

Using following relations $e=\rho+\rho \epsilon$ and $h=(e+p) / \rho=1+\epsilon+p / \rho$, we obtain

$$
\begin{align*}
& d(\rho+\rho \epsilon)=\frac{e+p}{\rho} d \rho  \tag{9}\\
& d \rho+\rho d \epsilon+\epsilon d \rho=\frac{e+p}{\rho} d \rho  \tag{10}\\
& d \rho\left(1+\epsilon-\frac{e+p}{\rho}\right)=-\rho d \epsilon  \tag{11}\\
& d \rho\left(\frac{\rho+\rho \epsilon-\rho-\rho \epsilon-p}{\rho}\right)=-\rho d \epsilon  \tag{12}\\
& \frac{d \epsilon}{d \rho}=\frac{p}{\rho^{2}} . \tag{13}
\end{align*}
$$

Adding Eqs. (6) and (13) to Eq. (5), the sound speed is written as

$$
\begin{equation*}
h c_{s}^{2}=\frac{d p}{d \rho}=\left[\left(\frac{\partial p}{\partial \rho}\right)_{s}+\frac{p}{\rho^{2}}\left(\frac{\partial p}{\partial \epsilon}\right)_{\rho}\right] . \tag{14}
\end{equation*}
$$

First we consider the ideal-fluid equation of state, $p=\rho \epsilon(\gamma-1)$. We take a differential

$$
\begin{equation*}
d p=(\gamma-1)(\rho d \epsilon+\epsilon d \rho) \tag{15}
\end{equation*}
$$

and divide by $d \rho$,

$$
\begin{equation*}
\frac{d p}{d \rho}=(\gamma-1)\left[\rho \frac{d \epsilon}{d \rho}+\epsilon\right] \tag{16}
\end{equation*}
$$

From the definition of energy density $e=\rho+\rho \epsilon$, we take a derivative and using the first law of thermodynamics,

$$
\begin{align*}
d e & =d \rho+\rho d \epsilon+\epsilon d \rho  \tag{17}\\
& =(1+\epsilon) d \rho+\rho d \epsilon=h d \rho \tag{18}
\end{align*}
$$

we rewrite it as

$$
\begin{align*}
& 1+\epsilon+\rho \frac{d \epsilon}{d \rho}=h=1+\gamma \epsilon  \tag{19}\\
& \epsilon+\rho \frac{d \epsilon}{d \rho}=\gamma \epsilon \tag{20}
\end{align*}
$$

Adding Eq. (20) to Eq. (16) we obtain

$$
\begin{equation*}
\frac{d p}{d \rho}=(\gamma-1)[\epsilon(\gamma-1)+\epsilon]=(\gamma-1) \gamma \epsilon=\frac{\gamma p}{\rho} \tag{21}
\end{equation*}
$$

Therefore the square of the sound speed using ideal-fluid equation of state is written as

$$
\begin{equation*}
c_{s}^{2}=\frac{1}{h} \frac{d p}{d \rho}=\frac{\gamma p}{\rho h}=\frac{(\gamma-1) \gamma \epsilon}{1+\gamma \epsilon}=(h-1)(\gamma-1) \tag{22}
\end{equation*}
$$

Second we consider the polytropic equation of state, $p=K \rho^{\Gamma}$. Taking a differential we obtain

$$
\begin{equation*}
d p=\left(\frac{\Gamma p}{\rho}\right) d \rho \tag{23}
\end{equation*}
$$

The energy density for polytropic equation of state is written as

$$
\begin{equation*}
e=\rho+\frac{1}{\Gamma-1} p=\rho+\rho \epsilon \tag{24}
\end{equation*}
$$

Using Eqs. (23) and (24), the square of sound speed using the polytropic equation of state is obtained as

$$
\begin{align*}
c_{s}^{2} & =\frac{1}{h} \frac{d p}{d \rho}=\frac{\Gamma p}{\rho h}=\frac{\Gamma p}{\rho+\rho \epsilon+p}  \tag{25}\\
& =\frac{\Gamma p}{\rho+\frac{p}{\Gamma-1}+p}=\frac{\Gamma(\Gamma-1) p}{\rho(\Gamma-1)+p \Gamma} \tag{26}
\end{align*}
$$

## Lecture VI, Exercise 2.

The pressure has the following relation,

$$
\begin{equation*}
p=\rho \epsilon(\gamma-1)=n m \epsilon(\gamma-1)=n k_{B} T \tag{27}
\end{equation*}
$$

Therefore the temperature is given by

$$
\begin{equation*}
T=\frac{m}{k_{B}}(\gamma-1) \epsilon \tag{28}
\end{equation*}
$$

From the first law of thermodynamics,

$$
\begin{equation*}
d \epsilon=T d s+\frac{p}{\rho^{2}} d \rho \tag{29}
\end{equation*}
$$

Using Eq. (28), it can be rewritten as

$$
\begin{align*}
d s & =\frac{1}{T} d \epsilon-\frac{p}{\rho^{2} T} d \rho  \tag{30}\\
& =\frac{k_{B}}{m(\gamma-1) \epsilon} d \epsilon-\frac{p k_{B}}{\rho^{2} m(\gamma-1) \epsilon} d \rho . \tag{31}
\end{align*}
$$

Using Eq. (27), Eq (31) is also written as

$$
\begin{align*}
\frac{m}{k_{B}} d s & =\frac{d \epsilon}{\epsilon(\gamma-1)}-\frac{d \rho}{\rho}  \tag{32}\\
& =\frac{d \ln \epsilon}{\gamma-1}-d \ln \rho  \tag{33}\\
& =d \ln \epsilon^{1 / \gamma-1}-d \ln \rho  \tag{34}\\
& =d\left[\ln \left(\frac{\epsilon^{1 / \gamma-1}}{\rho}\right)\right] \tag{35}
\end{align*}
$$

We can now integrate Eq. (35) to obtain

$$
\begin{equation*}
s=\frac{k_{B}}{m}\left[\ln \left(\frac{\epsilon^{1 / \gamma-1}}{\rho}\right)+\tilde{K}\right] . \tag{36}
\end{equation*}
$$

Here we consider the polytropic equation of state $\left(p=K \rho^{\Gamma}\right)$. The specific internal energy is given by

$$
\begin{equation*}
\epsilon=\frac{K \rho^{\Gamma-1}}{\Gamma-1} . \tag{37}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\epsilon^{1 / \Gamma-1}}{\rho}=\left(\frac{K}{\Gamma-1}\right)^{1 / \Gamma-1} \frac{\rho}{\rho}=\left(\frac{K}{\Gamma-1}\right)^{1 / \Gamma-1} \tag{38}
\end{equation*}
$$

As a result, Eq. (36) can be written as

$$
\begin{equation*}
s=\frac{k_{B}}{m}\left[\ln \left(\frac{K}{\Gamma-1}\right)^{1 / \Gamma-1}+\tilde{K}\right] . \tag{39}
\end{equation*}
$$

## Lecture VI, Exercise 3.

Let's start from the first law of thermodynamics

$$
\begin{equation*}
d p=\rho d h-\rho T d s \tag{40}
\end{equation*}
$$

Here we consider polytropic equation of state which pressure is a function of density only ( $p=p(\rho)$ ). Therefore

$$
\begin{equation*}
d p=\frac{\partial p}{\partial \rho} d \rho=P_{\rho}^{\prime} d \rho \tag{41}
\end{equation*}
$$

The specific enthalpy $h=e+p / \rho=1+\epsilon+p / \rho$. Taking the differential we obtain

$$
\begin{equation*}
d h=d \epsilon+d\left(\frac{p}{\rho}\right) \tag{42}
\end{equation*}
$$

From the polytropic equation of state, we know that the pressure is a function of density only, so that the internal energy is a function of density only $(\epsilon=\epsilon(\rho))$. Thus,

$$
\begin{equation*}
d \epsilon=\frac{\partial \epsilon}{\partial \rho} d \rho=\epsilon_{\rho}^{\prime} d \rho \tag{43}
\end{equation*}
$$

Using Eq (41), the second term of RHS in Eq (42) can be expressed as

$$
\begin{equation*}
d\left(\frac{p}{\rho}\right)=\frac{1}{\rho} d p-\frac{p}{\rho^{2}} d \rho=\frac{p_{\rho}^{\prime}}{\rho} d \rho-\frac{p}{\rho^{2}} d \rho=\frac{d \rho}{\rho}\left(p_{\rho}^{\prime}-\frac{p}{\rho}\right) . \tag{44}
\end{equation*}
$$

Therefore Eq. (40) is given by

$$
\begin{align*}
& p_{\rho}^{\prime} d \rho=\rho\left[\epsilon_{\rho}^{\prime} d \rho+\frac{d \rho}{\rho}\left(p_{\rho}^{\prime}-\frac{p}{\rho}\right)\right]-\rho T d s  \tag{45}\\
\rightarrow & 0=\rho \epsilon_{\rho}^{\prime} d \rho-\frac{p}{\rho} d \rho-\rho T d s  \tag{46}\\
\rightarrow & d \rho\left(\epsilon_{\rho}^{\prime}-\frac{p}{\rho^{2}}\right)=T d s  \tag{47}\\
\rightarrow & d \rho\left(\frac{\partial \epsilon}{\partial \rho}-\frac{p}{\rho^{2}}\right)=T d s . \tag{48}
\end{align*}
$$

This equation shows that if $\partial \epsilon / \partial \rho=p / \rho^{2}$, the polytropic equation of state is isentropic ( $d s=0$ ).

