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Lecture Xi, Exercise 1.
The Carter-Lichnerowicz equation is given by

Ωµνu
µ = T∇µs. (1)

Here we consider Newtonian limit of the Carter-Lichnerowicz equation. First we
rewrite Eq. (1) as
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As already discussed in the exercise of Lecture VIII, the covariant components of
the four-velocity vector in the Newtonian limit are given by
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while the corresponding covariant components are given by
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Similarly the expression for the relativistic specific enthalpy is
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where hN is the specific enthalpy in the Newtonian limit, hN = ε+ p/ρ. We substitute
these relations into Eq (2) to obtain
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In tthe Newtonian limit, the terms u0 and h
N
/c2 can be set to 1 and 0 respectively, so

that the second term in the RHS of Eq (6) can be changed as
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Finally we get
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This equation is known as the Crocco equation of motion.

Lecture IX, Exercise 2.
The vorticity four-vector is written as

Ωµ = ∗Ωµνuν =
1

2
εµναβΩαβuν . (9)

The kinetic vorticity four-vector is given by

ωµ = ∗ωµνuν =
1

2
εµναβωαβuν (10)

Writing out Eq (9) explicitly we obtain

Ωαβuν = [∇β(huα)uν −∇α(huβ)uν ]

= [h∇β(uα)uν + uαuν∇βh− h∇α(uβ)uν − uβuν∇αh]

= huν(∇βuα −∇αuβ) + uαuν∇βh− uβuν∇αh
= huν2∇[βuα], (11)

where the terms including uαuν and uβuν vanish because of the symmetry in the
indices and the antisymmetry of the Levi-Civita tensor.

From the definition of the kinetic vorticity tensor, we instead obtain

ωµν = ∇[µuν] + a[µuν]

⇒ ∇[µuν] = ωµν − a[µuν]. (12)

Therefore connecting these two results, the vorticity four-vector can be given by

Ωµ =
1

2
εµναβhuνωβα − εµναβhuνa[βuα]

= 2hωµ, (13)

where the second term of the RHS vanishes because of the symmetries in the four-
velocity.
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